论文

基于远距空空导弹轨迹数值优化的机-弹协同导引方法

  • 张迁 ,
  • 颜冠伟 ,
  • 聂勤 ,
  • 陈锐海 ,
  • 刘家宁
展开
  • 1.航空工业成都飞机设计研究所,成都 610091
    2.电子科技大学 航空航天学院,成都 611731
    3.西北工业大学 航空学院,西安 710072
    4.西北工业大学 航天学院,西安 710072

收稿日期: 2024-01-10

  修回日期: 2024-03-12

  录用日期: 2024-03-29

  网络出版日期: 2024-04-10

基金资助

中国博士后科学基金(2022M712588);陕西省自然科学基础研究计划(2022JQ-061)

Aircraft-missile cooperative guidance method based on trajectory numerical optimization of long-range air-to-air missiles

  • Qian ZHANG ,
  • Guanwei YAN ,
  • Qin NIE ,
  • Ruihai CHEN ,
  • Jianing LIU
Expand
  • 1.AVIC Chengdu Aircraft Design and Research Institute,Chengdu  610091,China
    2.School of Aeronautics and Astronautics,University of Electronic Science and Technology of China,Chengdu  611731,China
    3.School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
    4.School of Astronautics,Northwestern Polytechnical University,Xi’an  710072,China

Received date: 2024-01-10

  Revised date: 2024-03-12

  Accepted date: 2024-03-29

  Online published: 2024-04-10

Supported by

China Postdoctoral Science Foundation(2022M712588);Natural Science Basis Research Program of Shaanxi(2022JQ-061)

摘要

高性能无人机平台凭借灵活的作战空域、丰富的信息资源、强大的计算能力等优势逐渐成为了空战中的新质力量,本文针对远距协同攻击非合作目标面临的机载任务决策问题,提出了一种基于轨迹数值优化的机-弹协同导引算法。首先,建立了机-弹远距协同作战的质心运动微分动力学方程,并设计了轻量化数值积分算法快速计算机-弹的轨迹序列。其次,设计了时间-空间-角度约束下导弹轨迹的高效二次型数值优化求解算法,并给出了数值形式下的矩阵迭代运算格式。然后,采用改进Kmeans聚类算法将预测命中区凸包划分为导弹协同攻击子区域,并根据动态观测量对非合作目标的命中子区域进行概率计算与更新。最后,考虑了区域协同攻击、波次同点攻击两种协同方式,设计了机-弹最优协同导引的目标函数及约束方程,来优化机-弹协同作战能力。仿真实验验证了所提算法的正确性及有效性,高性能无人机完成了对非合作目标的区域协同与波次协同的导引决策且脱靶量不大于1 m,所提数值优化算法在嵌入式环境下耗时不大于150 ms,具有一定的工程应用参考价值。

本文引用格式

张迁 , 颜冠伟 , 聂勤 , 陈锐海 , 刘家宁 . 基于远距空空导弹轨迹数值优化的机-弹协同导引方法[J]. 航空学报, 2024 , 45(17) : 530138 -530138 . DOI: 10.7527/S1000-6893.2024.30138

Abstract

High performance unmanned aerial vehicle platforms have gradually emerged as a formidable asset in air combat, owing to their flexible combat airspace, abundant information resources, and powerful computing capabilities. This paper proposes an aircraft-missile collaborative guidance algorithm based on trajectory numerical optimization to address the airborne task decision-making problem faced by long-range collaborative attacks on non-cooperative targets. Firstly, the differential dynamic equations of the center of mass motion for long-range coordinated combat between aircraft and missiles were established, and a lightweight numerical integration algorithm was designed to quickly compute the trajectory sequence of the aircraft-missile. Secondly, we design an efficient quadratic numerical optimization algorithm tailored for missile trajectories under time-space-angle constraints, alongside providing a numerical format for matrix iteration operations. Then, the improved K-means clustering algorithm is used to divide the predicted hit area convex hull into missile coordinated attack sub regions, and probability calculations and updates are performed on the sub regions of non-cooperative targets based on dynamic observations. Finally, two collaborative methods, regional coordinated attack and wave same point attack, were considered, and the objective function and constraint equation for the optimal coordinated guidance of the aircraft missile were designed to optimize the collaborative combat capability of the aircraft missile. Simulation experiments have verified the correctness and effectiveness of the proposed algorithm. HPUAVs have completed guidance decisions for regional and wave coordination of non-cooperative targets with a miss distance of no more than 1 m. The proposed numerical optimization algorithm takes no more than 150 ms in embedded environments, and has certain engineering application reference value.

参考文献

1 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报202041(6): 524377.
  YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica202041(6): 524377 (in Chinese).
2 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报202243(10): 527397.
  FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527397 (in Chinese).
3 王海青, 王岩, 刘志男, 等. 空-空导弹发射的火控技术分析[J]. 飞机设计202040(2): 49-55.
  WANG H Q, WANG Y, LIU Z N, et al. Analysis of fire control technique for air-to-air missile launching[J]. Aircraft Design202040(2): 49-55 (in Chinese).
4 胡东愿, 杨任农, 闫孟达, 等. 基于自编码网络的导弹攻击区实时计算方法[J]. 航空学报202041(4): 323571.
  HU D Y, YANG R N, YAN M D, et al. Real-time calculation of missile launch envelope based on auto-encoder network[J]. Acta Aeronautica et Astronautica Sinica202041(4): 323571 (in Chinese).
5 徐安, 陈星, 李战武, 等. 基于战术攻击区的超视距空战态势评估方法[J]. 火力与指挥控制202045(9): 97-102.
  XU A, CHEN X, LI Z W, et al. A method of situation assessment for beyond-visual-range air combat based on tactical attack area[J]. Fire Control & Command Control202045(9): 97-102 (in Chinese).
6 胡东愿, 刘会亮, 岳龙飞, 等. 导弹发射包线指数优化搜索仿真分析[J]. 宇航学报202041(10): 1350-1360.
  HU D Y, LIU H L, YUE L F, et al. Simulation analysis of missile launching envelope with exponential optimization search[J]. Journal of Astronautics202041(10): 1350-1360 (in Chinese).
7 LEE S, SHIN H S, TSOURDOS A. Intent-informed state estimation for tracking guided targets[J]. Aerospace Science and Technology2023143: 108713.
8 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报202142(8): 525826.
  SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525826 (in Chinese).
9 SUN L H, YANG B Q, MA J. Trajectory prediction in pipeline form for intercepting hypersonic gliding vehicles based on LSTM[J]. Chinese Journal of Aeronautics202336(5): 421-433.
10 张百川, 毕文豪, 张安, 等. 基于Transformer模型的空战飞行器轨迹预测误差补偿方法[J]. 航空学报202344(9): 327413.
  ZHANG B C, BI W H, ZHANG A, et al. Transformer-based error compensation method for air combat aircraft trajectory prediction[J]. Acta Aeronautica et Astronautica Sinica202344(9): 327413 (in Chinese).
11 李战武, 李双庆, 彭明毓, 等. 基于注意力机制改进的LSTM空战目标意图识别方法[J]. 电光与控制202330(3): 1-7.
  LI Z W, LI S Q, PENG M Y, et al. An air combat target intention recognition method based on LSTM improved by attention mechanism[J]. Electronics Optics & Control202330(3): 1-7 (in Chinese).
12 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报202041(12): 324183.
  XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica202041(12): 324183 (in Chinese).
13 王因翰, 范世鹏, 吴广, 等. 基于GRU的敌方拦截弹制导律快速辨识方法[J]. 航空学报202243(2): 325024.
  WANG Y H, FAN S P, WU G, et al. Fast guidance law identification approach for incoming missile based on GRU network[J]. Acta Aeronautica et Astronautica Sinica202243(2): 325024 (in Chinese).
14 WANG C, SHAO L Z, HU G D, et al. Computing reachable sets for linear discrete systems with bounded input[C]∥2017 29th Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2017: 2743-2746.
15 王开园, 许志, 唐硕, 等. 一种基于飞行任务的临近空间短距滑翔飞行器弹道预示方法[J]. 宇航学报202142(1): 50-60.
  WANG K Y, XU Z, TANG S, et al. A trajectory prediction method for near space short-range glide vehicle based on flight mission[J]. Journal of Astronautics202142(1): 50-60 (in Chinese).
16 肖惟, 于江龙, 董希旺, 等. 过载约束下的大机动目标协同拦截[J]. 航空学报202041(S1): 723777.
  XIAO W, YU J L, DONG X W, et al. Cooperative interception of large maneuvering targets under overload constraint[J]. Acta Aeronautica et Astronautica Sinica2020, 41(S 1): 723777 (in Chinese).
17 YAN X H, KUANG M C, ZHU J H, et al. Reachability-based cooperative strategy for intercepting a highly maneuvering target using inferior missiles[J]. Aerospace Science and Technology2020106: 106057.
18 姜霞, 曾宪琳, 孙健, 等. 多飞行器的分布式优化研究现状与展望[J]. 航空学报202142(4): 524551.
  JIANG X, ZENG X L, SUN J, et al. Research status and prospect of distributed optimization for multiple aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524551 (in Chinese).
19 李国飞, 李博皓, 吴云洁, 等. 多群组飞行器攻击时间控制协同制导方法[J]. 宇航学报202344(1): 110-118.
  LI G F, LI B H, WU Y J, et al. Cooperative guidance law with impact time control for clusters of flight vehicles[J]. Journal of Astronautics202344(1): 110-118 (in Chinese).
20 唐杨, 祝小平, 周洲, 等. 一种基于攻击时间和角度控制的协同制导方法[J]. 航空学报202243(1): 324844.
  TANG Y, ZHU X P, ZHOU Z, et al. Cooperative guidance method based on impact time and angle control[J]. Acta Aeronautica et Astronautica Sinica202243(1): 324844 (in Chinese).
21 CHEN Z Y, YU J L, DONG X W, et al. Three-dimensional cooperative guidance strategy and guidance law for intercepting highly maneuvering target[J]. Chinese Journal of Aeronautics202134(5): 485-495.
22 YU J L, DONG X W, LI Q D, et al. Cooperative guidance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics202033(3): 990-1005.
23 SU W S, SHIN H S, CHEN L, et al. Cooperative interception strategy for multiple inferior missiles against one highly maneuvering target[J]. Aerospace Science and Technology201880: 91-100.
24 李国飞, 朱国梁, 吕金虎, 等. 主-从多飞行器三维分布式协同制导方法[J]. 航空学报202142(11): 524926.
  LI G F, ZHU G L, LYU J H, et al. Three-dimensional distributed cooperative guidance law for multiple leader-follower flight vehicles[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524926 (in Chinese).
25 林德福, 何绍溟, 王江, 等. 基于虚拟领弹-从弹的集群分布式协同制导技术研究[J]. 中国科学: 技术科学202050(5): 506-515.
  LIN D F, HE S M, WANG J, et al. On virtual leader-follower-based distributed cooperative swarm guidance strategy[J]. Scientia Sinica (Technologica)202050(5): 506-515 (in Chinese).
文章导航

/