流体力学与飞行力学

面向运载火箭栅格舵的最优操纵效率特征与宽速域气动优化设计方法

  • 刘明奇 ,
  • 韩忠华 ,
  • 杜涛 ,
  • 许晨舟 ,
  • 曾涵 ,
  • 张科施 ,
  • 宋文萍
展开
  • 1.西北工业大学 航空学院 飞行器基础布局全国重点实验室,西安 710072
    2.北京宇航系统工程研究所,北京 100076
.E-mail: dutao_calt@sohu.com

收稿日期: 2023-11-18

  修回日期: 2024-01-16

  录用日期: 2024-03-21

  网络出版日期: 2024-04-10

基金资助

国家重点研发计划(2023YFB3002800);陕西高校青年创新团队

Optimal control efficiency characteristics and wide-speed-range aerodynamic design optimization method for grid fins of launch vehicle

  • Mingqi LIU ,
  • Zhonghua HAN ,
  • Tao DU ,
  • Chenzhou XU ,
  • Han ZENG ,
  • Keshi ZHANG ,
  • Wenping SONG
Expand
  • 1.National Key Laboratory of Aircraft Configuration Design,School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Beijing Institute of Astronautical Systems Engineering. Beijing 100076,China

Received date: 2023-11-18

  Revised date: 2024-01-16

  Accepted date: 2024-03-21

  Online published: 2024-04-10

Supported by

National Key Research and Development Program of China(2023YFB3002800);The Youth Innovation Team of Shaanxi Universities

摘要

宽速域栅格舵设计是目前运载火箭子级重复使用的关键技术之一。栅格舵在火箭一子级返回飞行过程中经历亚、跨、超声速等多个速域,在不同速域下表现出截然不同的操纵效率和气动特性,甚至相互矛盾,使得高效率的栅格舵气动设计面临极大挑战。针对上述问题,应用基于机器学习代理模型的气动优化设计方法,分别开展了栅格舵在亚、跨、超声速典型状态的气动优化设计,获得了单个速域下的最优气动外形,并分析揭示了不同速域下栅格舵最优操纵效率的流动机制,为后续设计提供指导。由于实现最优操纵效率的流动机制不同,造成了不同速域优化解之间存在矛盾。针对上述矛盾,开展了宽速域栅格舵多目标气动优化设计,兼顾考虑亚、跨、超声速3个速域的影响,优化结果表明显著改善了栅格舵宽速域气动性能,提高了栅格舵操纵效率。

本文引用格式

刘明奇 , 韩忠华 , 杜涛 , 许晨舟 , 曾涵 , 张科施 , 宋文萍 . 面向运载火箭栅格舵的最优操纵效率特征与宽速域气动优化设计方法[J]. 航空学报, 2024 , 45(20) : 129887 -129887 . DOI: 10.7527/S1000-6893.2024.29887

Abstract

Wide-speed-range grid fins design is one of the key technologies for re-use of sub-stages of launch vehicle. In the course of a substage return flight, grid fins experience subsonic, transonic, supersonic, and other speed regimes. In different speed regimes, the control efficiency and aerodynamic characteristics of grid fins are completely different, and even contradictory, which makes the aerodynamic design of grid fins with high efficiency face great challenges. To address the above problems, this paper applies the aerodynamic design optimization method based on machine learning surrogate model to carry out aerodynamic optimization design of grid fins in subsonic, transonic and supersonic typical states respectively, and obtains the optimal aerodynamic shape in different speed regimes. The flow mechanism of the optimal control efficiency of the grid fins in different speed regimes is analyzed and revealed, which can provide guidance for the subsequent design. Because of the different optimization mechanisms of different speed regimes, there are contradictions between the optimal designs of different speed regimes. In view of the above contradictions, the multi-objective aerodynamic design optimization of wide-speed-range grid fins is carried out, taking into account the influence of sub, tran and supersonic speed regimes. The optimization results significantly improve the wide-speed-range aerodynamic performance of grid fins and improve the optimal control efficiency of grid fins.

参考文献

1 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报202344(23): 629555.
  BAO W M. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica202344(23): 629555 (in Chinese).
2 Clark Stephen, 艾麦乐. SpaceX回收火箭迈出关键一步[J]. 求知导刊2014(4): 34-37.
  STEPHEN C, AI M L. SpaceX takes a key step in recycling rockets[J]. Journal of Seeking Knowledge Guide2014(4): 34-37 (in Chinese).
3 贾洪印, 张培红, 赵炜, 等. 火箭子级垂直回收布局气动特性及发动机喷管影响[J]. 航空学报202142(2): 623995.
  JIA H Y, ZHANG P H, ZHAO W, et al. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle[J]. Acta Aeronautica et Astronautica Sinica202142(2): 623995 (in Chinese).
4 杜涛, 牟宇, 杨建民, 等. CZ-2C子级落区栅格舵的气动设计实践及发展展望[J]. 导弹与航天运载技术(中英文)2023(3): 20-26.
  DU T, MOU Y, YANG J M, et al. Practices and prospects for aerodynamic design of CZ-2C first stage landing area control with grid fin project[J]. Missiles and Space Vehicles2023(3): 20-26 (in Chinese).
5 HUGHSON M, BLADES E, ABATE G. Transonic aerodynamic analysis of lattice grid tail fin missiles[C]∥ 24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006.
6 SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences201684: 1-28.
7 BROOKS R A, BURKHALTER J E. Experimental and analytical analysis of grid fin configurations[J]. Journal of Aircraft198926(9): 885-887.
8 WASHINGTON W, MILLER M. Grid fins—A new concept for missile stability and control[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
9 MILLER M, WASHINGTON W. An experimental investigation of grid fin drag reduction techniques[C]∥ 12th Applied Aerodynamics Conference. Reston: AIAA, 1994.
10 GUYOT D, SCHüLEIN E. Novel locally swept lattice wings for missile control at high speeds[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
11 ABATE G, DUCKERSCHEIN R, HATHAWAY W. Subsonic/transonic free-flight tests of a generic missile with grid fins[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
12 ABATE G, WINCHENBACH G, HATHAWAY W. Transonic aerodynamic and scaling issues for lattice fin projectiles tested in a ballistics range[C]∥19th International Symposium of Ballistics. Thun, Switzerland: IBS 2001 Symposium Office, 2001: 413-420.
13 雷娟棉, 吴小胜, 吴甲生. 格栅尾翼(舵)外形参数对气动特性的影响[J]. 北京理工大学学报200727(8): 675-679.
  LEI J M, WU X S, WU J S. Effect of grid fin geometric parameter to the aerodynamic characteristics[J]. Transactions of Beijing Institute of Technology200727(8): 675-679 (in Chinese).
14 CHEN S Z, KHALID M, XU H Y, et al. A comprehensive CFD investigation of grid fins as efficient control surface devices[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
15 THEERTHAMALAI P, BALAKRISHNAN N. Effect of geometric parameters on the aerodynamic characteristics of grid-fin cells at supersonic speeds[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
16 杜涛, 许晨舟, 王国辉, 等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报202142(1): 61-73.
  DU T, XU C Z, WANG G H, et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project[J]. Journal of Astronautics202142(1): 61-73 (in Chinese).
17 杜涛, 龚安龙, 唐伟, 等. 局部后掠型栅格舵的气动特性研究[J]. 宇航总体技术20215(2): 14-23.
  DU T, GONG A L, TANG W, et al. Research on aerodynamic characteristic of locally swept grid fins[J]. Astronautical Systems Engineering Technology20215(2): 14-23 (in Chinese).
18 李永红, 黄勇, 陈建中, 等. 曲面形栅格翼气动特性研究[J]. 空气动力学学报201634(4): 536-540.
  LI Y H, HUANG Y, CHEN J Z, et al. Investigation of aerodynamic characteristics on circular-arc grid-fin configurations[J]. Acta Aerodynamica Sinica201634(4): 536-540 (in Chinese).
19 李永红, 杨晓娟, 陈建中, 等. 超声速栅格舵/弹身干扰特性数值模拟与试验研究[J]. 北京航空航天大学学报202147(5): 953-960.
  LI Y H, YANG X J, CHEN J Z, et al. Numerical simulation and test investigation on interference characteristics of grid fins with missile body at supersonic speed[J]. Journal of Beijing University of Aeronautics and Astronautics202147(5): 953-960 (in Chinese).
20 张培红, 贾洪印, 郭勇颜, 等. 基于FlowStar软件的栅格舵气动特性模拟[J]. 计算力学学报202239(4): 531-538.
  ZHANG P H, JIA H Y, GUO Y Y, et al. Aerodynamic characteristics simulation of grid rudder using FlowStar software[J]. Chinese Journal of Computational Mechanics202239(4): 531-538 (in Chinese).
21 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报201738(3): 020891.
  ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica201738(3): 020891 (in Chinese).
22 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
23 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报201839(5): 121736.
  QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica201839(5): 121736 (in Chinese).
24 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报201940(1): 522480.
  CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522480 (in Chinese).
25 LIU F, HAN Z H, ZHANG Y, et al. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance[J]. Aerospace Science and Technology201993: 105345.
26 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报201839(6): 121737.
  SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica201839(6): 121737 (in Chinese).
27 李永红. 栅格翼气动特性数值模拟与外形参数优化研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012: 25-51.
  LI Y H. Numerical investigations on aerodynamic characteristics and shape optimization of grid fins[D]. Mianyang: China Aerodynamic Research and Development Center, 2012: 25-51 (in Chinese).
28 PENG K, HU F, WANG D H, et al. Grid fins shape design of a launch vehicle based on sequential approximation optimization[J]. Advances in Space Research201862(7): 1863-1878.
29 LEDLOW T W, BURKHALTER J E, HARTFIELD R J. Integration of grid fins for the optimal design of missile systems[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015.
30 ORTHNER K S. Aerodynamic analysis of lattice grids in transonic flow[D]. Ohio: Air Force Institute of Technology, 2004.
31 ZENG Y, CAI J S, DEBIASI M, et al. Numerical study on drag reduction for grid-fin configurations[C]∥ 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
32 TRIPATHI M, SUCHEENDRAN M M, MISRA A. Flow field characterization and visualization of grid fin subsonic flow[J]. Journal of Fluids Engineering2019141(10): 101401.
33 MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics200042(1): 55.
34 HAN Z H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]∥30th Congress of the International Council of the Aeronautical Sciences. Daejeon: ICAS, 2016.
文章导航

/