论文

考虑涂敷的翼型气动高频电磁隐身一体化设计

  • 李思桐 ,
  • 夏露 ,
  • 周琳 ,
  • 赵轲
展开
  • 1.西北工业大学 航空学院,西安 710072 2.中国空气动力研究与发展中心,绵阳 621000
    3.飞行器基础布局全国重点实验室,西安 710072
.E-mail: zhaoke@nwpu.edu.cn

收稿日期: 2023-11-14

  修回日期: 2024-01-09

  录用日期: 2024-04-02

  网络出版日期: 2024-04-10

基金资助

国家重点研发计划(2023YFB3002800)

Integrated aerodynamic and high frequency electromagnetic stealth design of airfoil considering coating

  • Sitong LI ,
  • Lu XIA ,
  • Lin ZHOU ,
  • Ke ZHAO
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.China Aerodynamics Research and Development Center,Mianyang 621000,China
    3.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
E-mail: zhaoke@nwpu.edu.cn

Received date: 2023-11-14

  Revised date: 2024-01-09

  Accepted date: 2024-04-02

  Online published: 2024-04-10

Supported by

National Key Research and Development Program of China(2023YFB3002800)

摘要

隐身涂敷设计是先进作战飞机隐身性能的关键技术和必要措施,传统的涂敷设计主要依赖工程经验,缺乏对涂敷设计系统性研究,导致隐身涂敷设计与飞行器气动特性之间关系不明确,难以实现飞行器气动、隐身、重量和使用维护等一体化最优。针对以上问题,本文首先以对称翼型NACA65013为研究对象,对比分析了涂敷厚度和位置对其气动、隐身和重量特性的影响,发现涂敷位置和厚度对翼型气动、隐身特性和重量影响很大,并且三者存在明显的矛盾关系。在此基础上,综合气动、隐身和重量设计要求,选取了最优的涂敷区域,进而开展了考虑涂敷影响的翼型气动隐身优化设计研究,并与不考虑涂敷的翼型外形气动隐身优化设计结果进行对比。结果表明,考虑涂敷的气动隐身设计结果其前向RCS均值比不考虑涂敷的翼型外形气动隐身优化设计结果下降了1个数量级,比初始翼型前向RCS均值下降了90%以上。本文研究工作为飞机气动隐身外形精细化设计和涂敷材料精细化设计提供了高效可靠的设计方法,具有较大的理论和工程价值。

本文引用格式

李思桐 , 夏露 , 周琳 , 赵轲 . 考虑涂敷的翼型气动高频电磁隐身一体化设计[J]. 航空学报, 2024 , 45(17) : 529874 -529874 . DOI: 10.7527/S1000-6893.2024.29874

Abstract

Stealth coating design is the key technology and necessary measure for stealth performance of advanced combat aircraft. The traditional coating design mainly depends on engineering experience, and lacks systematic research on coating design, leading to the unclear relationship between stealth coating design and aerodynamic characteristics of aircraft. Thus, it is difficult to achieve integrated optimization of aircraft aerodynamics, stealth, weight, use and maintenance. To solve the above problems, this paper takes the symmetrical airfoil NACA65013 as the research object, and comparatively analyzes the effects of coating thickness and position on its aerodynamic, stealth and weight characteristics. It is found that the coating position and thickness significantly influence the aerodynamic, stealth and weight characteristics of the airfoil, with obvious contradictions among them. Then, according to the requirements of the aerodynamic, stealth and weight design, the optimal coating area is selected, the aerodynamic stealth optimization design of the airfoil considering the influence of coating is conducted and compared with that of airfoil shape without coating. The results show that the forward Radar Cross-Section(RCS) of the aerodynamic stealth design results considering coating is one order of magnitude lower than that of the airfoil shape without coating, and more than 90% lower than that of the initial airfoil. This research provides an efficient and reliable design method for the fine design of aircraft aerodynamic stealth shape and coating material, exhibiting high theoretical and engineering value.

参考文献

1 LI M, BAI J Q, LI L, et al. A gradient-based aero-stealth optimization design method for flying wing aircraft[J]. Aerospace Science and Technology201992: 156-169.
2 RANI S S, RAJ S R, RAKSHITH G R, et al. Numerical investigation for selection of airfoil with regard to flying wing applications[J]. International Journal of Fluid Mechanics Research202249(5): 59-70.
3 LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft200441(1): 10-25.
4 KROO I. Innovations in aeronautics: AIAA-2004-0001[R]. Reston: AIAA, 2004.
5 张彬乾, 罗烈, 陈真利, 等. 飞翼布局隐身翼型优化设计[J]. 航空学报201435(4): 957-967.
  ZHANG B Q, LUO L, CHEN Z L, et al. On stealth airfoil optimization design for flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica201435(4): 957-967 (in Chinese).
6 焦子涵, 张彬乾, 沈冬. 翼型几何参数对隐身特性的影响研究[J]. 机械科学与技术201231(12): 1980-1987.
  JIAO Z H, ZHANG B Q, SHEN D. Investigation on the effects of geometric parameters on airfoils’ stealth characteristics[J]. Mechanical Science and Technology for Aerospace Engineering201231(12): 1980-1987 (in Chinese).
7 张伟, 高正红, 程巧怡, 等. 飞翼布局翼型气动隐身特性相关性分析[C]∥ 中国力学大会-2021+1论文集(第二册). 北京:中国力学学会,2022.
  ZHANG W, GAO Z H, CHENG Q Y, et al. Correlation analysis of aerodynamic stealth characteristics of flying wing layout airfoil[C]∥ Chinese Congress of Theoretical and Applied Mechanics -2021+1 essays (volume 2). Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2022 (in Chinese).
8 夏露, 张欣, 杨梅花, 等. 飞翼布局翼型气动隐身综合设计[J]. 西北工业大学学报201735(5): 821-826.
  XIA L, ZHANG X, YANG M H, et al. Airfoil aerodynamic stealth integrated design for a flying wing configuration[J]. Journal of Northwestern Polytechnical University201735(5): 821-826 (in Chinese).
9 贺媛媛, 周超. 飞行器隐身技术研究及发展[J]. 飞航导弹2012(1): 84-91.
  HE Y Y, ZHOU C. Research and development of aircraft stealth technology[J]. Aerodynamic Missile Journal2012(1): 84-91 (in Chinese).
10 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.
  SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013 (in Chinese).
11 贾高伟, 郭正. 国外隐身无人机的发展[J]. 国防科技201940(2): 13-16.
  JIA G W, GUO Z. The development of the foreign stealth UAV[J]. National Defense Technology201940(2): 13-16 (in Chinese).
12 余定峰, 何思远, 付松, 等. 基于PO-EEC的各向同性介质薄层涂覆目标电磁散射[J]. 系统工程与电子技术201234(12): 2428-2432.
  YU D F, HE S Y, FU S, et al. Electromagnetic scattering from targets coated with thin layer of isotropic dielectric based on PO-EEC method[J]. Systems Engineering and Electronics201234(12): 2428-2432 (in Chinese).
13 余定峰, 何思远, 朱国强, 等. 各向异性材料涂覆目标电磁散射特性仿真[J]. 电子与信息学报201133(7): 1718-1721.
  YU D F, HE S Y, ZHU G Q, et al. Simulation of the electromagnetic scattering for target coated with anisotropic materials[J]. Journal of Electronics & Information Technology201133(7): 1718-1721 (in Chinese).
14 余定峰, 姚菁晶, 何思远, 等. 任意截面非均匀各向异性阻抗柱体的电磁散射[J]. 电波科学学报201025(5): 979-983.
  YU D F, YAO J J, HE S Y, et al. Electromagnetic scattering from anisotropic inhomogeneous impedance cylinder of arbitrary shape[J]. Chinese Journal of Radio Science201025(5): 979-983 (in Chinese).
15 王明亮. 飞行器气动与隐身综合设计研究[D]. 西安: 西北工业大学, 2005.
  WANG M L. Aerodynamic and stealth integrated design of aircraft considering radar absorbing material coating [D]. Xi’?an: Northwestern Polytechnical University, 2005 (in Chinese).
16 欧阳迪. 考虑吸波材料涂敷的飞行器气动隐身综合设计[D]. 西安: 西北工业大学,2020.
  OUYANG D. Aerodynamic and stealth integrated design of aircraft considering radar absorbing material coating [D]. Xi’?an: Northwestern Polytechnical University, 2020 (in Chinese)
17 秦远田, 孙汗青, 岳鑫. 涂敷雷达吸波材料对战机电磁隐身性能的影响[J]. 微波学报202137(S1): 249-252.
  QIN Y T, SUN H Q, YUE X. Effect of coated radar absorbing materials on the electromagnetic stealth performance of warplanes [J]. Journal of Microwaves202137(S1): 249-252 (in Chinese).
18 项凤涛, 王正志, 吴第旻, 等. 捷联系统四元数姿态解算的精细积分法[J]. 四川兵工学报201031(5): 103-106.
  XIANG F T, WANG Z Z, WU D M, et al. Precise integration method for quaternion attitude solution of strapdown system[J]. Journal of Sichuan Ordnance201031(5): 103-106 (in Chinese).
19 Harrington R. Field computation by moment methods [M]. Hoboken: Wiley-IEEE Press, 1968.
20 程巧怡.飞翼布局气动隐身协同优化设计方法研究[D].西安: 西北工业大学, 2021
  CHENG Q Y. Collaborative optimization design method for aerodynamic stealth of flying wing configuration [D]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese).
21 夏明耀, 王均宏. 电磁场理论与计算方法要论[M]. 北京: 北京大学出版社, 2013.
  XIA M Y, WANG J H. On electromagnetic field theory and calculation method[M]. Beijing: Peking University Press, 2013 (in Chinese).
22 KNOTT E F. A progression of high-frequency RCS prediction techniques[J]. Proceedings of the IEEE198573(2): 252-264.
23 艾俊强, 周莉, 杨青真. S弯隐身喷管[M]. 北京: 国防工业出版社, 2017.
  AI J Q, ZHOU L, YANG Q Z. S shaped stealth nozzle[M]. Beijing: National Defense Industry Press, 2017 (in Chinese).
24 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报201233(4): 625-633.
  GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica201233(4): 625-633 (in Chinese).
25 LANE K, MARSHALL D. Inverse airfoil design utilizing CST parameterization: AIAA-2010-1228[R]. Reston: AIAA, 2010.
26 KULFAN B. A universal parametric geometry representation method -“CST”: AIAA-2007-0062[R]. Reston: AIAA, 2007.
27 KULFAN B, BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes: AIAA-2006-6948[R]. Reston: AIAA, 2006.
28 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
29 SóBESTER A, LEARY S J, KEANE A J. A parallel updating scheme for approximating and optimizing high fidelity computer simulations[J]. Structural and Multidisciplinary Optimization200427(5): 371-383.
30 LI H, ZHANG Q F. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation200913(2): 284-302.
31 ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation200711(6): 712-731.
文章导航

/