综述

电动垂直起降飞行器的技术现状与发展

  • 邓景辉
展开
  • 中国直升机设计研究所,景德镇 333001
.E-mail: djhz5421@163.com

收稿日期: 2023-12-04

  修回日期: 2023-12-12

  录用日期: 2024-01-11

  网络出版日期: 2024-03-21

基金资助

国家级项目

Technical status and development of electric vertical take⁃off and landing aircraft

  • Jinghui DENG
Expand
  • China Helicopter Research & Development Institute,Jingdezhen 333001,China
E-mail: djhz5421@163.com

Received date: 2023-12-04

  Revised date: 2023-12-12

  Accepted date: 2024-01-11

  Online published: 2024-03-21

Supported by

National Level Project

摘要

电池、电机技术的进步和分布式电推进系统的应用极大促进了电动垂直起降飞行器的发展。本文概述了不同电动垂直起降飞行器构型优缺点及适用场景,并从性能、经济性等方面对电动垂直起降飞行器与常规燃油飞行器进行了全面对比。在噪声特性方面,电动垂直起降飞行器旋翼间、旋翼-机翼等干扰噪声更为突出,而低桨尖速度、大实度的电推进旋翼系统极大降低了全机噪声水平(噪声降低约15 dB)。在能源方面,锂离子电池是当前和未来电动垂直起降飞行器的主要能源;先进的电池材料体系、电池-机体结构一体化设计及优良的电池管理系统是未来提升全机能量密度和能源安全的有效方式。电动垂直起降飞行器冗余操纵特点增加了飞控系统设计难度,但同时也能够提高全机安全性;故障重构与协同控制是飞控系统设计面临的新课题。电动垂直起降飞行器不仅构型种类丰富且具有高压电动力、电推进、电传飞控、电作动等新颖设计特征,当前缺少试飞数据的情况下,基于系统的工程方法是开展其安全性设计的主要方法。

本文引用格式

邓景辉 . 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024 , 45(5) : 529937 -529937 . DOI: 10.7527/S1000-6893.2023.29937

Abstract

The development of electric Vertical Take-off and Landing (eVTOL) aircraft is greatly promoted for the advances in battery and motor technologies and the application of distributed electric propulsion system. In this paper, the advantages and disadvantages of different eVTOL configurations and their application scenarios are summarized, and a comprehensive comparison between eVTOL and conventional fuel aircraft is made in terms of performance, noise and cost. The interaction noise by rotors and rotor-wing is more prominent for eVTOL, but the electric propulsion rotor system with low tip speed and large rotor solidity greatly reduces its noise level (about a reduction of 15 dB). Lithium-ion batteries are the main energy source for current and future eVTOL. The advanced battery material system, integrated design of battery-structure and excellent battery management system are effective ways to improve the energy density and energy security of the whole aircraft in the future. The redundant manipulation of eVTOL increases the difficulty of flight control system design, but improves the safety of the whole aircraft at the same time. Fault reconstruction and collaborative control are new challenges faced by eVTOL. A wide variety of configurations and novel design features such as high voltage power, electric propulsion, flight-by-wire flight system and electric actuation are proposed for eVTOLs. In the absence of flight test data, the system-based method is the main method for safety design of eVTOL.

参考文献

1 Air Transport Action Group (ATAG). The right flightpath to reduce aviation emissions[EB/OL]. (2011-11)[2023-11-30]. .
2 Advisory Council for Aeronautical Research in Europe (ACARE). European aeronautics: A vision for 2020[EB/OL]. (2001-05-01)[2023-11-30]..
3 High Level Group on Aviation Research. Maintaining global leadership and serving society’s needs: Report of the high-level group on aviation research policy [M]∥ Flight path 2050: Europe’s vision for aviation. Brussels: Luxembourg Publication office of the European Union, European Commission, 2011.
4 HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[EB/OL]. (2016-10-27)[2023-11-30]. .
5 STRAUBINGER A, ROTHFELD R, SHAMIYEH M, et al. An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction[J]. Journal of Air Transport Management202087: 101852.
6 DENSO CORPORATION. Request for proposal: Electric vertical takeoff and landing aircraft: EP4023550A1[P]. 2022-07-06.
7 FAA. Urban air mobility and advanced air mobility[EB/OL].(2022-06-19)[2023-11-30]. .
8 MORGAN STANLEY. eVTOL/urban air mobility TAM update: A slow take-off, but sky’s the limit [EB/OL]. (2022-06-19)[2023-11-30]. .
9 FAA. Joby receives Part 135 certification from the FAA[EB/OL].(2023-02-20)[2023-11-30]. .
10 eVTOL INSIGHTS EDITORIAL. “Take a bow midnight”: Archer unveils its production aircraft - eVTOL insights[EB/OL].(2023-02-20)[2023-11-30]. .
11 ALCOCK C. Vertiport testbed evaluates eVTOL air services at paris airport[EB/OL].(2023-02-26)[2023-11-30]..
12 中国民用航空局. 亿航 EH216-S 型无人驾驶航空器系统专用条件 [S]. 北京:中国民用航空局, 2022.
  Civil Aviation Administration of China. Special conditions for EH216-S unmanned aircraft system [S]. Beijing: Civil Aviation Administration of China, 2022 (in Chinese).
13 DUFFY M J, WAKAYAMA S R, HUPP R. A study in reducing the cost of vertical flight with electric propulsion[C]∥ Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017.
14 PRADEEP P, WEI P. Energy efficient arrival with RTA constraint for urban eVTOL operations[C]∥ Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
15 FREDERICKS W J, MOORE M D, BUSAN R C. Benefits of hybrid-electric propulsion to achieve 4x increase in cruise efficiency for a VTOL UAV[C]∥ AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2013.
16 穆作栋, 袁成. 美国空军敏捷至上电动垂直起降飞行器项目分析[J]. 飞航导弹2021(2): 59-63, 75.
  MU Z D, YUAN C. Analysis of the agile-oriented electric vertical takeoff and landing vehicle project of the US air force[J]. Aerodynamic Missile Journal2021(2): 59-63, 75 (in Chinese).
17 FISLER E. Comprehensive study and fundamental understanding of lithium sulfur batteries for eVTOL[D]. Maryland: University of Maryland, College Park, 2022.
18 LANGFORD J S, HALL D K. Electrified aircraft propulsion[J]. The Bridge202050(2): 21-27.
19 Graduate Team Aircraft-E-VTOL. Request for proposal: Electric vertical takeoff and landing aircraft[EB/OL]. (2019-03-05)[2023-11-30]. .
20 DOO J T, PAVEL M D, DIDEY A, et al. NASA electric vertical takeoff and landing (eVTOL) aircraft technology for public services: Professional Review[R]. Washington, D.C.: NASA, 2021.
21 CLARKE S, REDIFER M, PAPATHAKIS K, et al. X-57 power and command system design[C]∥ 2017 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2017: 393-400.
22 BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator: AIAA-2016-3920[R]. Reston: AIAA, 2016.
23 MOORE M D. Misconceptions of electric aircraft and their emerging aviation markets[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
24 LAHAJI S, CURRIER P, ANDERSON R, et al. Modelling of a hybrid-electric system and design of load-following control law on hybrid-electric urban air mobility power plants[C]∥ Vertical Flight Society 77th Annual Forum & Technology Display. 2021.
25 BROWN A, HARRIS W. A vehicle design and optimization model for on-demand aviation[C]∥ Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018.
26 FINGER D F, BRAUN C, BIL C. A review of configuration design for distributed propulsion transitioning VTOL aircraft[C]∥Asia-Pacific International Symposium on Aerospace Technology APISAT 2017. 2017.
27 UGWUEZE O, STATHEROS T, BROMFIELD M A, et al. Trends in eVTOL aircraft development: The concepts, enablers and challenges[C]∥ Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023.
28 STRAUBINGER A, ROTHFELD R, SHAMIYEH M, et al. An overview of current research and developments in urban air mobility-Setting the scene for UAM introduction[J]. Journal of Air Transport Management202087: 101852.
29 HIRSCHBERG M. Stand on the shoulders of giants[EB/OL]. (2019-01) [2023-11-30]. .
30 KADHIRESAN A R, DUFFY M J. Conceptual design and mission analysis for eVTOL urban air mobility flight vehicle configurations[C]∥ Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
31 BACCHINI A, CESTINO E. Electric VTOL configurations comparison[J]. Aerospace20196(3): 26.
32 MOLLER P S, ENG M. Performance evaluation of select personal air vehicles[EB/OL]. (2020-12-07) [2023-11-30]. .
33 MOLLER P S. Airborne personalized travel using ‘powered lift aircraft’: AIAA-1998-5533[R]. Reston: AIAA, 1998.
34 NATHEN P, STROHMAYER A, MILLER R, et al. Architectural performance assessment of an electric vertical take-off and landing (e-VTOL) aircraft based on a ducted vectored thrust concept[C]∥ Lilium GmbH, Claude-Dornier StraeSSe. 2021.
35 STOLL A M, STILSON E V, BEVIRT J, et al. Conceptual design of the Joby S2 electric VTOL PAV[C]∥ Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014.
36 Robinson Helicopter Company. R22 pilot’s operating handbook and FAA approved rotorcraft flight manual[EB/OL]. (2021-11-17)[2023-11-30]. .
37 Van’s aircraft - aircraft models: RV-7/7A specifications[EB/OL]. (2014-06)[2023-11-30]. .
38 Van’s aircraft - aircraft models: RV-7/7A performance[EB/OL]. (2014-06)[2023-11-30]. .
39 STOLL A, AVIATION J, BEVIRT J. Development of eVTOL aircraft for urban air mobility at joby aviation[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022.
40 焦云华. 多点噪声测量方法研究及飞机噪声测量设备研制[D]. 北京: 北京航空航天大学, 2000.
  JIAO Y H. Research on multi-point noise measurement method and development of aircraft noise measurement equipment[D].Beijing: Beihang University, 2000 (in Chinese).
41 DRIESSENS S, POUNDS P E I. Towards a more efficient quadrotor configuration[C]∥ 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 1386-1392.
42 COLLINS E J, BROWN A, COATNEY M, et al. Lighter-than-air and pressurized structures technology for unmanned aerial vehicles(UAVs)[EB/OL]. (2010-01)[2023-11-30]. .
43 VICENCIO K, KORRAS T, BORDIGNON K A, et al. Energy-optimal path planning for six-rotors on multi-target missions[C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 2481-2487.
44 MORBIDI F, CANO R, LARA D. Minimum-energy path generation for a quadrotor UAV[C]∥ 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 1492-1498.
45 PRADEEP P, WEI P. Optimal speed profile for arrival of tandem tilt-wing eVTOL aircraft with RTA constraint[C]∥2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC). Piscataway: IEEE; 2018.
46 《飞机设计手册》总编委会.飞机设计手册.19,直升机设计[M]. 北京:航空工业出版社, 2005.
  General Editorial Board of the Aircraft Design Manual. Aircraft design manual. 19, helicopter design[M]. Beijing: Aviation Industry Press, 2005 (in Chinese).
47 KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥ 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21.
48 梁向东. 电动飞行器及其关键技术的研究探析[J]. 航空科学技术202031(6): 1-6.
  LIANG X D. Research on electric vehicle and its key technology[J]. Aeronautical Science & Technology202031(6): 1-6 (in Chinese).
49 JOHNSON W, SILVA C. Observations from exploration of VTOL urban air mobility designs[C]∥Asian/Australian Rotorcraft Forum (ARF 2018). 2018.
50 JOHNSON W. NDARC - NASA design and analysis of rotorcraft validation and demonstration: NASA TP 2015-218751 [R]. Washington, D.C.: NASA, 2015.
51 JOHNSON W. NDARC — NASA design and analysis of rotorcraft. Theoretical basis and architecture[C]∥American Helicopter Society Specialists' Conference on Aeromechanics. 2010.
52 JOHNSON W. NDARC — NASA design and analysis of rotorcraft. Validation and demonstration[C]∥American Helicopter Society Specialists’ Conference on Aeromechanics. 2010.
53 JOHNSON W. Propulsion system models for rotorcraft conceptual design[C]∥American Helicopter Society 5th Decennial Aeromechanics Specialists’ Conference. 2014.
54 BOYD D D JR, GREENWOOD E, WATTS M E, et al. Examination of a rotorcraft noise prediction method and comparison to flight test data: NASA TM 2017-219370[R]. Washington, D.C.: NASA, 2017.
55 KRISHNAMURTHY S, RIZZI S, BOYD D D, et al. Auralization of rotorcraft periodic flyover noise from design predictions[C]∥ American Helicopter Society 74th Annual Forum. 2018.
56 LAWRENCE B, THEODORE C R, JOHNSON W, et al. A handling qualities analysis tool for rotorcraft conceptual designs[J]. The Aeronautical Journal2018122(1252): 960-987.
57 ROHL P J, DORMAN P, CESNIK C E S, et al. IXGEN — A modeling tool for the preliminary design of composite rotor blades[C]∥American Helicopter Society Future Vertical Lift Aircraft Design Conference. 2012.
58 SILVA C, JOHNSON W, SOLIS E. Multidisciplinary conceptual design for reduced-emission rotorcraft[C]∥ American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight. 2018.
59 JOHNSON W, SILVA C, SOLIS E. Concept vehicles for VTOL air taxi operations[C]∥ American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight. 2018.
60 PATTERSON M D, ANTCLIFF K R, KOHLMAN L. A proposed approach to studying urban air mobility missions including an initial exploration of mission requirements[C]∥ American Helicopter Society 74th Annual Forum. 2018.
61 SILVA C J, JOHNSON W, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development: AIAA-2018-3847[R]. Reston: AIAA, 2018.
62 COLE J A, RAJAUSKI L, LOUGHRAN A, et al. Configuration study of electric helicopters for urban air mobility[J]. Aerospace20218(2): 54.
63 KEE S G. Guide for conceptual helicopter design[D]. Monterey: Naval Postgraduate School(Monterey), 1983.
64 SALINGER S J. Electric helicopter configuration selection for urban air mobility applications[D]. Lewisburg: Bucknell University, 2019.
65 RAJAUSKI L. Component based selection criteria for electric helicopter conceptual design[D]. Lewisburg: Bucknell University, 2020.
66 AKASH A, RAJ V S J, SUSHMITHA R, et al. Design and analysis of VTOL operated intercity electrical vehicle for urban air mobility[J]. Electronics202111(1): 20.
67 赵洪, 李建波, 刘铖. 电动直升机概念设计与分析[J]. 航空学报201738(7): 520866.
  ZHAO H, LI J B, LIU C. Conceptual design and analysis of electric helicopters[J]. Acta Aeronautica et Astronautica Sinica201738(7): 520866 (in Chinese).
68 NASA. OpenVSP [EB/OL]. (2022-12-16)[2023-11-30]. .
69 NASA. Thrust to weight ratio [EB/OL]. (2015)[2023-11-30]. .
70 Aerodynamic research: NASA Technical Paper 3675[R]. Washington, D. C.: NASA, 1997.
71 SADRAEY M H. Aircraft design: A systems engineering approach[M]. Chichester: John Wiley & Sons, 2013.
72 “Eclipse aviation eclipse 500-specifications - technical data /description[EB/OL]. (2020-08-22) [2023-11-30]. .
73 LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2006.
74 BAEDER J D. Passive design for isolated blade-vortex interaction noise reduction[C]∥ Proceedings of the 53th Annual Forum of the American Helicopter Society. 1997.
75 SCHULTZ K J, SPLETTSTOESSER W, JUNKER B. A parametric wind tunnel test on rotorcraft aerodynamics and acoustics(HELISHAPE) –Test procedures and representative results[C]∥ Proceedings of the 22nd European Rotorcraft Forum. 1996.
76 CHEN P C, BAEDER J D, EVANS R A D, et al. Blade-vortex interaction noise reduction with active twist smart rotor technology[J]. Smart Materials and Structures200110(1): 77-85.
77 GARETON V, GERVAIS M, HEGER R. Acoustic design and testing of the Eurocopter EC145T2 and EC175B - A harmonized Franco-German approach[C]∥ Proceedings of the 39th European Rotorcraft Forum. 2013.
78 LEVERTON J W. Helicopter noise: What is the problem? Vertiflite201460(2): 12-15.
79 HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[R]. San Francisco: UBER, 2016.
80 MASAHIKO S, YASUTADA T. Development of a hybrid method of CFD and prescribed wake model for helicopter BVI noise prediction[C]∥ Proceedings of 69th Annual Forum of the AHS. 2013.
81 RIZZI S A, HUFF D, BOYD D D JR, et al. Urban air mobility noise: Current practice, gaps, and recommendations: NASA/TP–2020-5007433 [R]. Washington, D.C.: NASA, 2020.
82 QUACKENBUSH T, RICCI-MORETTI L, BRENTNER K, et al. Aeroacoustic modeling of an eVTOL slowed rotor winged compound aircraft[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. 2019.
83 WACHSPRESS D, BRENTNER K, CONTINUUM D D I, et al. Rotor/airframe aeroacoustic prediction for eVTOL UAM aircraft[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. 2019.
84 JIA Z Q, LEE S. Acoustic analysis of urban air mobility quadrotor aircraft[C]∥ Vertical Flight Society’s Transformative Vertical Flight Forum. 2020.
85 ALVAREZ E, UNIVERSITY B Y, CRITCHFIELD T, et al. Rotor-on-rotor aeroacoustic interactions of multirotor in hover[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020.
86 SMITH B, INSTITUTE R P, GANDHI D, et al. A comparison of multicopter noise characteristics with increasing number of rotors[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020.
87 SMITH B, LYRINTZIS A, INSTITUTE R P, et al. An assessment of multi-copter noise in edgewise flight[C]∥ Proceedings of the Vertical Flight Society 77th Annual Forum. 2021.
88 SMITH B, LYRINTZIS A, INSTITUTE R P, et al. eVTOL rotor noise in ground effect[C]∥ Proceedings of the Vertical Flight Society 77th Annual Forum.2021.
89 PASSE B, BAEDER J. Computational aeroacoustics of different propeller configurations for eVTOL applications[C]∥Vertical Flight Society’s Autonomous VTOL Technical Meeting and Electric VTOL Symposium. 2019.
90 ZHANG J, BRENTNER K, SMITH E. Prediction of the aerodynamic and acoustic impact of propeller-wing interference[C]∥ Proceedings of the Vertical Flight Society’s Aeromechanics for Advanced Vertical Flight Technical Meeting. 2020.
91 DELRIEUX Y, SPLE W R, MERCHER E, et al. The ONERA—DLR aeroacoustic rotor optimisation programme ERATO: Methodology and achievements[C]∥AHS Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists Meeting. 2002.
92 SPLETTSTOESSER W, SCHULTZ K, BOXWELL D, et al. Helicopter model rotor-blade vortex interaction impulsive noise: scalability and parametric variations[C]∥ 10th European Rotorcraft Forum. 1984.
93 GANDHI F, INSTITUTE R P, PEPE J, et al. High solidity, low tip-speed rotors for reduced eVTOL tonal noise[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022.
94 FLEMING J, SCHWARTZ K, ALEXANDER N, et al. Measured acoustic characteristics of low tip speed eVTOL rotors in hover[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022.
95 MORGADO J, SILVESTRE M ? R, PáSCOA J C. Validation of new formulations for propeller analysis[J]. Journal of Propulsion and Power201531(1): 467-477.
96 GUR O, ROSEN A. Propeller performance at low advance ratio[J]. Journal of Aircraft200542(2): 435-441.
97 OL M, ZEUNE C, LOGAN M. Analytical/experimental comparison for small electric unmanned air vehicle propellers[C]∥ Proceedings of the 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
98 MACNEILL R, VERSTRAETE D. Blade element momentum theory extended to model low Reynolds number propeller performance[J]. The Aeronautical Journal2017121(1240): 835-857.
99 PHILLIPS W F. Mechanics of flight[M]. 2nd ed. New York: John Wiley & Sons, 2010.
100 ZAGHARI B, KIRAN A, SINNIGE T, et al. The impact of electric machine and propeller coupling design on electrified aircraft noise and performance[C]∥ Proceedings of the AIAA SCITECH 2023 Forum. Reston: AIAA, 2023.
101 张卓然, 陆嘉伟, 张伟秋, 等 .飞机电推进系统高效能电机及其驱动控制技术[J/OL].中国电机工程学报, (2023-07-07) [2023-11-30]. .
  ZHANG Z R, LU J W, ZHANG W Q, et al. High-performance electric machine and drive technologies for aircraft electric propulsion[J/OL]. Proceedings of the CSEE, (2023-07-07). [2023-11-30] (in Chinese).
102 杨敏. 锂电池在航空领域的应用再现曙光[J]. 航空维修与工程2017(9): 30-32 (in Chinese).
  YANG M. Lithium battery began to return commercial aircraft[J]. Aviation Maintenance & Engineering2017(9): 30-32 (in Chinese).
103 SAHOO S, ZHAO X, KYPRIANIDIS K. A review of concepts, benefits, and challenges for future electrical propulsion-based aircraft[J]. Aerospace20207(4): 44.
104 LEI T, YANG Z, LIN Z C, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics201932(6): 1488-1503.
105 ZHANG C Z, QIU Y Q, CHEN J W, et al. A comprehensive review of electrochemical hybrid power supply systems and intelligent energy managements for unmanned aerial vehicles in public services[J]. Energy and AI20229: 100175.
106 BREIT J S. Improved energy management system for airplane electrical power[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA: SAE International, 2021.
107 BOLAM R C, VAGAPOV Y, ANUCHIN A. Review of electrically powered propulsion for aircraft[C]∥ 2018 53rd International Universities Power Engineering Conference (UPEC). Piscataway: IEEE Press, 2018: 1-6.
108 WHEELER P, SIRIMANNA T S, BOZHKO S, et al. Electric/hybrid-electric aircraft propulsion systems[J]. Proceedings of the IEEE2021109(6): 1115-1127.
109 BRELJE B J, MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences2019104: 1-19.
110 ANSELL P J, HARAN K S. Electrified airplanes: A path to zero-emission air travel[J]. IEEE Electrification Magazine20208(2): 18-26.
111 FREDERICKS W L, SRIPAD S, BOWER G C, et al. Performance metrics required of next-generation batteries to electrify vertical takeoff and landing (VTOL) aircraft[J]. ACS Energy Letters20183(12): 2989-2994.
112 SNYDER C, CENTER N G R. More/all electric vertical take-off and landing (VTOL) vehicle sensitivities to propulsion and power performance[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020.
113 YANG X G, LIU T, GE S H, et al. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft[J]. Joule20215(7): 1644-1659.
114 HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews201778: 834-854.
115 王超君, 陈翔, 彭思侃, 等. 锂离子电池发展现状及其在航空领域的应用分析[J]. 航空材料学报202141(3): 83-95.
  WANG C J, CHEN X, PENG S K, et al. Recent advances in lithium-ion batteries and their applications towards aerospace[J]. Journal of Aeronautical Materials202141(3): 83-95 (in Chinese).
116 AMIN R, MURALIDHARAN N, DIXIT M, et al. Design and performance of lithium-ion batteries for achieving electric vehicle takeoff, flight, and landing[M]∥ Lithium-ion batteries-recent advanced and emerging topics [Working Title]. London: IntechOpen Limited, 2022.
117 AFONSO F, SOHST M, DIOGO C M A, et al. Strategies towards a more sustainable aviation: A systematic review[J]. Progress in Aerospace Sciences2023137: 100878.
118 JIANG K, LIAO G L, E J Q, et al. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review[J]. Journal of Energy Storage202032: 101816.
119 CHEN Q, ZHANG G B, ZHANG X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability[J]. Applied Energy2021286: 116496.
120 WANG Z C, DU C Q. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews2021139: 110685.
121 ANDERSON A D, RENNER N J, WANG Y Y, et al. System weight comparison of electric machine topologies for electric aircraft propulsion[C]∥ 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-16.
122 EL-REFAIE A, OSAMA M. High specific power electrical machines: A system perspective[J]. CES Transactions on Electrical Machines and Systems20193(1): 88-93.
123 高华敏, 张卓然, 王晨, 等. 电推进飞机新型高功率密度轴向磁场永磁电机对比与分析[J]. 航空学报202243(5): 325229.
  GAO H M, ZHANG Z R, WANG C, et al. Comparison and analysis of new high power density axial flux permanent magnet machine for electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(5): 325229 (in Chinese).
124 鄢永. 分布式电推进飞机背景下的永磁同步电机电流控制研究[D]. 南京: 南京航空航天大学, 2021.
  YAN Y. Research on current control of permanet magnet synchoronous motor for distributed electric propulsion aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
125 CHEN R R, NIU J H, REN R, et al. A cryogenically-cooled MW inverter for electric aircraft propulsion[C]∥ 2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2020: 1-10.
126 ZHANG D, HE J B, PAN D. A megawatt-scale medium-voltage high-efficiency high power density “SiC+Si” hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems[J]. IEEE Transactions on Industry Applications201955(6): 5971-5980.
127 DESHPANDE A, CHEN Y Z, NARAYANASAMY B, et al. Design of a high-efficiency, high specific-power three-level T-type power electronics building block for aircraft electric-propulsion drives[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics20208(1): 407-416.
128 HASSAN M U, YUAN Z, PENG H W, et al. Model based optimization of propulsion inverter for more-electric aircraft applications using double Fourier integral analysis[C]∥ Proceedings of the AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020.
129 WILLIS J B, BEARD R W. Pitch and thrust allocation for full-flight-regime control of winged eVTOL UAVs[J]. IEEE Control Systems Letters20216: 1058-1063.
130 SUI?MEZ E C, KUTAY A T. Full envelope nonlinear flight controller design for a novel electric VTOL (eVTOL) air taxi[J]. The Aeronautical Journal2023: 1-28.
131 PAVEL M D. Understanding the control characteristics of electric vertical take-off and landing (eVTOL) aircraft for urban air mobility[J]. Aerospace Science and Technology2022125: 107143.
132 WALTER A, MCKAY M, NIEMIEC R, et al. Hover dynamics and flight control of a UAM-scale quadcopter with hybrid RPM and collective pitch control[J]. Journal of the American Helicopter Society202368(2): 143-160.
133 陈森, 薛文超, 黄一. 推力矢量飞行器的自抗扰控制设计及控制分配[J]. 控制理论与应用201835(11): 1591-1600.
  CHEN S, XUE W C, HUANG Y. Active disturbance rejection control and control allocation for thrust-vectored aircraft[J]. Control Theory & Applications201835(11): 1591-1600 (in Chinese).
134 LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Dynamic inversion based full envelope flight control for an eVTOL vehicle using a unified framework[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
135 MUKHERJEE B, UNIVERSITY P S, BRENTNER K, et al. An investigation of piloting and flight control strategies on generic eVTOL noise[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022.
136 SAETTI U, ENCIU J, HORN J F. Flight dynamics and control of an eVTOL concept aircraft with a propeller-driven rotor[J]. Journal of the American Helicopter Society202267(3): 153-166.
137 LIU J X, LIN Q, LIU D H, et al. Robust adaptive control of a slow rotor compound eVTOL general aircraft[C]∥ 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE). Piscataway: IEEE Press, 2022: 126-130.
138 SCHOSER J, CUADRAT-GRZYBOWSKI M, CASTRO S G. Preliminary control and stability analysis of a long-range eVTOL aircraft[C]∥ Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
139 YOKOTA K, FUJIMOTO H. Aerodynamic force control for tilt-wing eVTOL using airflow vector estimation[J]. IEEE Transactions on Transportation Electrification20228(4): 4163-4172.
140 SIMMONS B M. System identification for eVTOL aircraft using simulated flight data[C]∥ Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
141 LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Nonlinear dynamic inversion based attitude control for a hovering quad tiltrotor eVTOL vehicle[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
142 QU S, ZHU G M, SU W H, et al. Adaptive model predictive control of a six-rotor electric vertical take-off and landing urban air mobility aircraft subject to motor failure during hovering[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2022236(7): 1396-1407.
143 QU S, ZHU G M, SU W H, et al. LPV model-based adaptive MPC of an eVTOL aircraft during tilt transition subject to motor failure[J]. International Journal of Control, Automation and Systems202321(2): 339-349.
144 刘巨江, 谭郁松 .基于安全性的电动垂直起降飞行器飞控系统架构设计[J/OL].重庆大学学报, (2023-07-19)[2023-11-30]. .
  LIU J J, TAN Y S. Architecture design of flight control system for electric vertical takeoff and landing aircraft based on safety analysis[J/OL]. Journal of Chongqing University, (2023-07-19) [2023-11-30]. (in Chinese).
145 International Civil Aviation Organization. Annex 8-Airworthiness of aircraft 12th Edition[R]. Montreal, Quebec: ICAO, 2018.
146 EASA. Special condition for small-category VTOL aircraft[R]. Cologne: EASA, 2019.
147 FAA. Airworthiness criteria: Special class airworthiness criteria for the Joby Aero, Inc. Model JAS4–1 powered-lift[R]. Washington, D.C.: FAA, 2022.
148 FAA. Airworthiness criteria: Special class airworthiness criteria for the Archer Aviation Inc. Model M001 powered-lift[R]. Washington, D.C.: FAA2022. [149] LITTELLJD. Challenges in Vehicle Safety and Occupant Protection for Autonomous electric Vertical Take-off and Landing (eVTOL) Vehicles[C]∥ 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2019: 1-16.
150 CARDOSO S H S B, DE OLIVEIRA M V R, GODOY J R S. eVTOL certification in FAA and EASA performance-based regulation environments: A bird strike study-case[J]. Journal of Aerospace Technology and Management2022, 14.
151 SAE International Aerospace Recommended Practice. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE Standard ARP4761 [S]. Washington, D.C.: SAE, 1996.
文章导航

/