材料工程与机械制造

局部重加权CSC的倒装芯片振动信号去噪方法

  • 宿磊 ,
  • 陈超 ,
  • 李可 ,
  • 顾杰斐 ,
  • 赵新维
展开
  • 江南大学 智能制造学院,无锡 214122
.E-mail: like_jiangnan@163.com

收稿日期: 2024-02-16

  修回日期: 2024-03-06

  录用日期: 2024-03-18

  网络出版日期: 2024-04-03

基金资助

国家自然科学基金(52375099);国家重点研发计划(2023YFB4404203);无锡市太湖之光攻关项目(G20211002)

Vibration signal denoising method of flip chip based on local reweighting CSC

  • Lei SU ,
  • Chao CHEN ,
  • Ke LI ,
  • Jiefei GU ,
  • Xinwei ZHAO
Expand
  • School of Intelligent Manufacturing,Jiangnan University,Wuxi 214122,China

Received date: 2024-02-16

  Revised date: 2024-03-06

  Accepted date: 2024-03-18

  Online published: 2024-04-03

Supported by

National Natural Science Foundation of China(52375099);National Key Research and Development Program of China(2023YFB4404203);Wuxi Taihu Light Tackling Project(G20211002)

摘要

针对航空电子设备中倒装芯片缺陷检测振动信号易受噪声影响,缺陷特征不明显等问题,提出一种基于局部重加权卷积稀疏编码(CSC)的方法,以实现倒装芯片振动信号的重构去噪。该方法采用CSC模型全局表示振动信号,能够避免字典高维数问题,以有效降低训练字典和稀疏分解的计算复杂度;其次,针对倒装芯片振动信号稀疏度不同的问题,提出重加权CSC模型,并且为了抑制局部噪声,构建局部重加权CSC模型,在迭代过程中将能量熵以权重的方式重新分配应用于加权策略中,更好地匹配局部块CSC结构;此外,提出随机梯度下降(SGD)的有效加速策略,利用安德森加速(AA)外推法加速SGD算法,对卷积字典历史迭代信息进行线性组合,实现加速卷积字典的学习以及提高字典的求解精度。仿真和实际倒装芯片振动信号试验结果表明,所提方法能够有效地去除倒装芯片振动信号中的噪声,相对于现有流行CSC去噪算法更具竞争性及优越性。

本文引用格式

宿磊 , 陈超 , 李可 , 顾杰斐 , 赵新维 . 局部重加权CSC的倒装芯片振动信号去噪方法[J]. 航空学报, 2024 , 45(23) : 430300 -430300 . DOI: 10.7527/S1000-6893.2024.30300

Abstract

To address the problems that vibration signal of flip-chip defect detection in avionics equipment is easily affected by noise, and the defect characteristics are not obvious, a Convolutional Sparse Coding (CSC) method based on locally reweighted is proposed to reconstruct and de-noise. In this study, CSC model is used to globally represent the vibration signal, so as to avoid the problem of high dictionary dimensions and effectively reduce the computational complexity of training dictionary and sparse decomposition. Secondly, to solve the problem of different sparsity of flip-chip vibration signals, a reweighted CSC model is proposed. In order to suppress local noise, a local reweighted CSC model is constructed. In the iterative process, the energy entropy is redistributed in the way of weights, and applied to the weighted strategy, which can better match the local block CSC structure. In addition, an effective acceleration strategy of Stochastic Gradient Descent (SGD) is proposed, which uses Anderson acceleration (AA) extrapolation method to accelerate the SGD algorithm. This strategy linearly combines the historical iteration information of the convolution dictionary to accelerate the learning of the convolution dictionary and improve the accuracy of dictionary solution. The results of simulation and actual flip chip vibration signal experiments show that the proposed CSC method can effectively remove noise in flip chip vibration signal, and is more competitive and superior to the existing popular CSC denoise algorithms.

参考文献

1 姬青. 宇航用国产倒装芯片结构分析研究[D]. 上海: 上海交通大学, 2019: 1-7.
  JI Q. Construction analysis of domestic flip chip for aerospace[D]. Shanghai: Shanghai Jiao Tong University, 2019: 1-7 (in Chinese).
2 YANG J, UME I C. Laser ultrasonic technique for evaluating solder bump defects in flip chip packages using modal and signal analysis methods[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control201057(4): 920-932.
3 吕克洪, 程先哲, 李华康, 等. 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报201940(11): 023285.
  LYU K H, CHENG X Z, LI H K, et al. New developments of prognostic and health management technology for electronic equipment[J]. Acta Aeronautica et Astronautica Sinica201940(11): 023285 (in Chinese).
4 张学坤. 基于超声激励的倒装芯片缺陷检测技术研究[D]. 武汉:华中科技大学, 2011: 9-37.
  ZHANG X K. Study on defect inspection of flip chip based on ultrasonic excitation[D]. Wuhan: Huazhong University of Science and Technology, 2011: 9-37 (in Chinese).
5 刘俊超. 超声激振的倒装焊缺陷诊断关键技术研究[D]. 武汉: 华中科技大学, 2013: 20-48.
  LIU J C. Research on key technology for flip chip fault diagnosis using ultrasonic excitation and vibration analysis[D]. Wuhan: Huazhong University of Science and Technology, 2013: 20-48 (in Chinese).
6 YANG J, ZHANG L Z, UME I C. Defect detection of flip chip solder bumps with wavelet analysis of laser ultrasound signals[J]. IEEE Transactions on Advanced Packaging201033(1): 19-29.
7 董隽硕, 吴玲达, 郝红星. 稀疏表示技术与应用综述[J]. 计算机系统应用202130(7): 13-21.
  DONG J S, WU L D, HAO H X. Survey on sparse representation techniques and applications[J]. Computer Systems & Applications202130(7): 13-21 (in Chinese).
8 BRISTOW H, ERIKSSON A, LUCEY S. Fast convolutional sparse coding[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013: 391-398.
9 WOHLBERG B. Efficient algorithms for convolutional sparse representations[J]. IEEE Transactions on Image Processing201625(1): 301-315.
10 SILVA G, RODRIGUEZ P. Efficient consensus model based on proximal gradient method applied to convolutional sparse problems[DB/OL]. arXiv preprint2011.10100, 2020.
11 PAPYAN V, ROMANO Y, ELAD M, et al. Convolutional dictionary learning via local processing[C]∥2017 IEEE International Conference on Computer Vision. 2017: 5306-5314.
12 ZISSELMAN E, SULAM J, ELAD M. A local block coordinate descent algorithm for the CSC model[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 8200-8209.
13 张烁, 刘治汶. 航空发动机轴承故障结构化贝叶斯稀疏表示[J]. 航空学报202243(9): 625056.
  ZHANG S, LIU Z W. Structured Bayesian sparse representation of aero-engine bearing failures[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625056 (in Chinese).
14 PAPYAN V, SULAM J, ELAD M. Working locally thinking globally: theoretical guarantees for convolutional sparse coding[J]. IEEE Transactions on Signal Processing201765(21): 5687-5701.
15 刘源, 庞宝君, 迟润强, 等. 基于声发射的铝蜂窝板超高速撞击损伤模式识别方法[J]. 航空学报201738(5): 152-164.
  LIU Y, PANG B J, CHI R Q, et al. A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission[J]. Acta Aeronautica et Astronautica Sinica201738(5): 152-164 (in Chinese).
16 EFRON B, HASTIE T, JOHNSTONE I M, et al. Least angle regression[J]. Annals of Statistics200432(2): 407-499.
17 ANDERSON D G. Iterative procedures for nonlinear integral equations[J]. Journal of the ACM196512(4): 547-560.
18 SCIEUR D, D’ASPREMONT A, BACH F. Regularized nonlinear acceleration[DB/OL]. arXiv preprint: 1606.04133v3, 2019.
19 SILVA G, RODRIGUEZ P. Efficient convolutional dictionary learning using partial update fast iterative shrinkage-thresholding algorithm[C]∥2018 IEEE International Conference on Acoustics Speech and Signal Processing. 2018: 4674-4678.
20 赵永梅. VMD和小波阈值重构的电力电缆局部放电信号去噪法[J]. 西安科技大学学报202141(4): 739-746.
  ZHAO Y M. Denoising method of cable partial discharge signals based on VMD and wavelet threshold reconstruction[J]. Journal of Xi’an University of Science and Technology202141(4): 739-746 (in Chinese).
21 LI M D, WANG J H, GUO L W, et al. A novel fusion denoising algorithm of spectral subtraction and wiener filtering for MEMS magnetic signal in PDR positioning[J]. Alexandria Engineering Journal202375: 139-150.
文章导航

/