流体力学与飞行力学

氢气燃料斜爆轰发动机内波系对楔面调控的动态响应特性

  • 郗雪辰 ,
  • 牛淑贞 ,
  • 杨鹏飞 ,
  • 杜文强 ,
  • 何国胜 ,
  • 滕宏辉
展开
  • 1.山西警察学院 治安系,太原 030401
    2.北京理工大学 宇航学院,北京 100081
    3.中国科学院 力学研究所 高温气体动力学国家重点实验室,北京 100190
.E-mail: 15904913089@163.com

收稿日期: 2024-02-01

  修回日期: 2024-02-21

  录用日期: 2024-03-19

  网络出版日期: 2024-04-03

基金资助

国家自然科学基金(12202014)

Dynamic response characteristics of wave systems to wedge control in hydrogen-fueled oblique detonation engines

  • Xuechen XI ,
  • Shuzhen NIU ,
  • Pengfei YANG ,
  • Wenqiang DU ,
  • Guosheng HE ,
  • Honghui TENG
Expand
  • 1.Department of Public Security,Shanxi Police College,Taiyuan 030401,China
    2.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    3.State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

Received date: 2024-02-01

  Revised date: 2024-02-21

  Accepted date: 2024-03-19

  Online published: 2024-04-03

Supported by

National Natural Science Foundation of China(12202014)

摘要

受限空间内斜爆轰波与壁面的干扰难以避免,当斜爆轰波反射产生马赫杆时,气流总压损失急剧增大甚至爆轰波系发生失稳,因此流动调控成为斜爆轰稳定燃烧的重要手段。本文选取氢气-空气混气,首次将重叠网格技术应用于斜爆轰的数值仿真,对比研究了驻定与非驻定爆轰波系对不同楔面移动策略的动态响应特性。研究发现,对于驻定的反射波系,楔面向下游移动能够实现从马赫反射结构到回流区结构的转变,楔面移动的速度大小主要影响流场演化过程中波系的变化特征。对于非驻定的反射波系,马赫杆和反射激波下游亚声速区的发展合并是导致流动壅塞和波系失稳发生的主要原因。斜爆轰反射流场的演化过程表明,当楔面移动能够减小波后亚声速区的面积,并破坏流场内产生的流动壅塞结构时,失稳的爆轰波系才能重新稳定。楔面移动的调控效果取决于马赫杆移动速度和楔面调控速度的相对大小,并存在1个速度边界(减速阶段:Vw=1.52 VMS+65;加速阶段:Vw=1.56 VMS+92)。

本文引用格式

郗雪辰 , 牛淑贞 , 杨鹏飞 , 杜文强 , 何国胜 , 滕宏辉 . 氢气燃料斜爆轰发动机内波系对楔面调控的动态响应特性[J]. 航空学报, 2024 , 45(22) : 130275 -130275 . DOI: 10.7527/S1000-6893.2024.30275

Abstract

Interference between oblique detonation waves and walls in confined spaces is inevitable. When these detonation waves reflect and generate Mach stems, there is a sharp increase in total pressure loss in the airflow, leading to potential instability in the detonation wave system. Thus, flow control becomes a crucial method for stabilizing oblique detonation combustion. This paper selects a hydrogen-air mixture, and for the first time applies the overlapping grid technology to the numerical simulation of oblique detonation. The dynamic response characteristics of stationary and non-stationary detonation wave systems to different wedge movement strategies are compared. The study finds that for the stationary reflection wave system, moving the wedge downstream facilitates the transition from a Mach reflection structure to a recirculation zone structure, with the speed of wedge movement significantly affecting the characteristics of wave system changes during the flow field evolution. For the non-stationary reflection wave system, the development and merging of the Mach stem and the subsonic area downstream of the reflected shock are the main causes for flow congestion and wave system instability. The evolution process of the oblique detonation reflection flow field shows that only when the wedge movement can reduce the area of the subsonic region behind the wave and disrupt the flow congestion structure within the flow field can the unstable detonation wave system be restabilized. The effectiveness of wedge movement control depends on the relative speeds of the Mach stem movement and the wedge control speed, with the existence of velocity boundary during deceleration (Vw = 1.52 VMS + 65) and accelerationVw = 1.56 VMS + 92).

参考文献

1 PRUSSI M, LEE U, WANG M, et al. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels[J]. Renewable and Sustainable Energy Reviews2021150: 111398.
2 LIAO W J, FAN Y, WANG C N, et al. Emissions from intercity aviation: An international comparison[J]. Transportation Research Part D: Transport and Environment202195: 102818.
3 CONTRERAS A. Hydrogen as aviation fuel: A comparison with hydrocarbon fuels[J]. International Journal of Hydrogen Energy199722(10-11): 1053-1060.
4 PETRESCU R V V, MACHíN A, FONTáNEZ K, et al. Hydrogen for aircraft power and propulsion[J]. International Journal of Hydrogen Energy202045(41): 20740-20764.
5 DONG G, FAN B C. Chemistry acceleration modeling of detonation based on the dynamical storage/deletion algorithm[J]. Combustion Science and Technology2009181(9): 1207-1216.
6 WOLA?SKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute201334(1): 125-158.
7 ZHANG B, MEHRJOO N, NG H D, et al. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution[J]. Combustion and Flame2014161(5): 1390-1397.
8 ZHANG Y N, YANG P F, TENG H H, et al. Transition between different initiation structures of wedge-induced oblique detonations[J]. AIAA Journal201856(10): 4016-4023.
9 WANG K, YU X D, ZHANG Y K, et al. Studies on the valveless scheme to produce high-frequency detonations with different purge methods[J]. Proceedings of the Combustion Institute202339(3): 2825-2834.
10 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报201536(1): 245-260.
  WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica201536(1): 245-260 (in Chinese).
11 SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences201684: 1-28.
12 FRY R, FRY R. The U.S. navy’s contributions to airbreathing missile propulsion technology: AIAA-2011-6942[R]. Reston: AIAA, 2011.
13 SEHRA A K, WHITLOW W. Propulsion and power for 21st century aviation[J]. Progress in Aerospace Sciences200440(4-5): 199-235.
14 LI C P, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks[J]. Physics of Fluids19946(4): 1600-1611.
15 VIGUIER C, GOURARA A, DESBORDES D. Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow[J]. Symposium (International) on Combustion199827(2): 2207-2214.
16 ZHANG B, BAI C H. Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels - An overview[J]. Fuel2014, 117(PART A): 294-308.
17 TENG H H, NG H D, LI K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame2015162(2): 470-477.
18 LU F K, FAN H Y, WILSON D R. Detonation waves induced by a confined wedge[J]. Aerospace Science and Technology200610(8): 679-685.
19 FAN H Y, LU F K. Numerical modelling of oblique shock and detonation waves induced in a wedged channel[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008222(5): 687-703.
20 WANG K L, TENG H H, YANG P F, et al. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner[J]. Journal of Fluid Mechanics2020903: A28.
21 彭俊, 马嘉文, 杨鹏飞, 等. 斜爆轰波系在受限空间内的演变及其临界条件的数值研究[J]. 推进技术202142(4): 738-744.
  PENG J, MA J W, YANG P F, et al. Numerical study on structural evolution and transitional criteria of oblique detonation waves in confined space[J]. Journal of Propulsion Technology202142(4): 738-744 (in Chinese).
22 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波[J]. 物理学报201463(20): 204701.
  LIU Y, ZHOU J, LIN Z Y. Ramp-induced oblique detonation wave with an incoming b oudary layer effect[J]. Acta Physica Sinica201463(20): 204701 (in Chinese).
23 牛淑贞, 杨鹏飞, 杨旸, 等. 来流速度突变对斜爆轰反射波系驻定特性影响的数值研究[J]. 中国科学: 物理学、 力学、 天文学202353(3): 164-176.
  NIU S Z, YANG P F, YANG Y, et al. Numerical study on the influence of inlet velocity discontinuity on the stationary characteristics of oblique detonation reflected wave system[J]. Scientia Sinica Physica, Mechanica & Astronomica, 202353(3): 164-176 (in Chinese).
24 WANG K L, ZHANG Z J, YANG P F, et al. Numerical study on reflection of an oblique detonation wave on an outward turning wall[J]. Physics of Fluids202032(4): 046101.
25 TENG H H, TIAN C, ZHANG Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Journal of Fluid Mechanics2021913: A1.
26 WILSON G J, MACCORMACK R W. Modeling supersonic combustion using a fully implicit numerical method[J]. AIAA Journal199230(4): 1008-1015.
27 JACHIMOWSKI C J. Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[J]. Washington, D.C.: NASA1988.
28 CHOI J Y, SHIN E J R, JEUNG I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave[J]. Proceedings of the Combustion Institute200932(2): 2387-2396.
29 CHOI J Y, JEUNG I S, YOON Y. Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 1: Validation[J]. AIAA Journal200038(7): 1179-1187.
30 CHAPUIS M, FEDINA E, FUREBY C, et al. A computational study of the HyShotⅡ combustor performance[J]. Proceedings of the Combustion Institute201334(2): 2101-2109.
31 BENEK J, BUNING P, STEGER J. A 3-D chimera grid embedding technique: AIAA-1985-1523[R]. Reston: AIAA, 1985.
32 陈作斌, 江雄, 周铸, 等. 计算流体技术及应用[J]. 中国科学:技术科学200838(5): 657-670.
  CHEN Z B, JIANG X, ZHOU Z, et al. Computational fluid technology and its application[J]. Scientia Sinica Technologica200838(5): 657-670 (in Chinese).
33 PREWITT N C, BELK D M, SHYY W. Parallel computing of overset grids for aerodynamic problems with moving objects[J]. Progress in Aerospace Sciences200036(2): 117-172.
34 GAO B, WU Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal of Fluid Mechanics2010656: 29-50.
35 WANG K L, YANG P F, TENG H H. Steadiness of wave complex induced by oblique detonation wave reflection before an expansion corner[J]. Aerospace Science and Technology2021112: 106592.
36 CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning199520(3): 273-297.
37 ABISLEIMAN S, BIELAWSKI R, RAMAN V. High-fidelity simulation of oblique detonation waves: AIAA-2024-1656[R]. Reston: AIAA, 2024.
38 DESAI S, TAO Y J, SIVARAMAKRISHNAN R, et al. Effects of non-thermal termolecular reactions on wedge-induced oblique detonation waves[J]. Combustion and Flame2023257: 112681.
文章导航

/