上层大气层飞行器气动布局优化设计
收稿日期: 2024-01-16
修回日期: 2024-02-18
录用日期: 2024-03-21
网络出版日期: 2024-04-03
基金资助
省部级项目
Aerodynamic layout optimization design of upper atmosphere aircraft
Received date: 2024-01-16
Revised date: 2024-02-18
Accepted date: 2024-03-21
Online published: 2024-04-03
Supported by
Provincial or Ministerial Level Project
针对上层大气层飞行器,基于试验粒子Monte Carlo方法,开展了正方形、正六边形和圆形等不同横截面形状的飞行器本体在定容条件下的气动布局优化研究,获得了飞行器本体阻力最小时的长细比,并以阻力最优时的飞行器本体为基础,确定了包含太阳电池翼构型的飞行器自配平气动布局,最后对飞行器稳定性进行了分析。研究结果表明:在250 km上层大气层,飞行器本体摩阻占比较大,该占比随着飞行器本体长细比的增大而增加;在长细比为12.98时,飞行器本体阻力最小;定容条件下,飞行器本体阻力系数与长细比呈线性变化,摩阻系数与压阻系数则保持不变;3种横截面形状中,正方形截面的飞行器本体阻力最大,六边形次之,圆形最小。对于太阳电池翼结构,第一折偏转(布局1)时和三折全部偏转(布局2)时,飞行器处于自配平状态的偏转角度分别为33.8°和18°,考虑飞行器本体散热时,布局1要更优越一些。对于安装偏差,质心向飞行器底部偏移时,飞行器处于静不稳定状态,质心向飞行器头部偏移时,飞行器处于静稳定状态。
李俊红 , 黄飞 , 靳旭红 , 苗文博 , 程晓丽 . 上层大气层飞行器气动布局优化设计[J]. 航空学报, 2024 , 45(22) : 130164 -130164 . DOI: 10.7527/S1000-6893.2024.30164
Optimization of the aerodynamic layout of square, hexagonal and circular upper atmosphere aircraft with different cross sections under constant volume was studied by using the test particle Monte Carlo (TPMC) method. The aspect ratio of the aircraft body with the minimum drag force is obtained. Based on this body, the auto-trim aerodynamic layout of the aircraft including the solar cell wing configuration is determined. Finally, the stability of the aircraft is analyzed. The results show that at the upper atmosphere of 250 km, the fraction of friction force in drag of the aircraft body is relatively large, increasing with the increase of the aspect ratio of the aircraft body. When the aspect ratio is 12.98, the total drag of the aircraft body is the smallest. The total drag force coefficient of the aircraft body varies linearly with its aspect ratio under constant volume, while the friction force coefficient and the pressure force coefficient remain constant. In three kinds of cross section shapes mentioned above, the total drag force of the square section is the greatest, followed by that of the hexagon and the circle. For the solar cell wing structure, the wing deflection angles of the aircraft inauto-strim state are 33.8° and 18° for the first solar section deflection configuration (Configuration 1) and the total three solar section deflection configuration (Configuration 2), respectively. For the aircraft wing in auto-strim state, Configuration 1 is superior when considering the heat dissipation of the aircraft body. Regarding installation deviation, when the center of the aircraft is shifted to the bottom of the aircraft, it is in a statically unstable state, and when the center of mass is shifted to the head of the aircraft, it is in a statically stable state.
Key words: upper atmosphere; aircraft; auto-trim; aerodynamic; layout; static stability
1 | MITRA S K. The upper atmosphere[M]. Royal Asiatic Society of Bengal Press, 1990: 1-5. |
2 | JIN X H, CHENG X L, HUANG Y Q, et al. Numerical analysis of inlet flows at different altitudes in the upper atmosphere[J]. Physics of Fluids, 2023, 35: 093605. |
3 | 靳旭红,程晓丽,沈清,等.吸气式电推进系统进气道气体流动数值分析[J].中国科学:物理学 力学 天文学,2024,54(3): 150-161. |
JIN X H, CHENG X L, SHEN Q, et al. Numerical analysis of inlet flows in an atmosphere-breathing electric propulsion system (in Chinese). Sci Sin-Phys Mech Astron, 2024, 54(3): 150-161 (in Chinese). | |
4 | JIN X H, MIAO W B, CHENG X L, et al. Monte Carlo simulation of inlet flows in atmosphere-breathing electric propulsion[J]. AIAA Journal, 2024, 62(2): 518-529. |
5 | 周靖云, 靳旭红, 程晓丽, 等. 气固相互作用对吸气式电推进系统进气道性能的影响研究[J]. 清华大学学报, 2024, 64(9): 1536-1546. |
ZHOU J Y, JIN X H, CHENG X L, et al. Effects of gas-surface interaction on the inlet performance of an atmosphere-breathing electric propulsion system[J]. Journal of Tsinghua University (Sci & Technol), 2024, 64(9): 1536-1546 (in Chinese). | |
6 | 沈清, 黄飞, 程晓丽, 等. 飞行器上层大气层空气动力特性探讨[J]. 气体物理, 2021, 6(1): 1-9. |
SHEN Q, HUANG F, CHENG X L, et al. On characteristics of upper atmosphere aerodynamics of flying vehicles[J]. Physics of Gases, 2021, 6(1): 1-9 (in Chinese). | |
7 | OWENS J M .Precision global strike: Is there a role for the navy conventional trident modification or the air force conventional strike missile: ADA518974 [R].Maxwell AFB: Air University, 2008. |
8 | 唐绍峰, 张静. 世界主要空天卫星研制情况及未来发展趋势[J]. 国际航空, 2017(466): 30-37. |
TANG S F, ZHANG J. Development status and trend of the world’s major aerospace vehicles[J]. Space International, 2017(466): 30-37 (in Chinese). | |
9 | 徐慨, 陈霄, 董蛟. 国外航天侦察卫星的现状与发展[J]. 信息通信, 2015, 28(3): 76-79. |
XU K, CHEN X, DONG J. Present situation and development of foreigspace reconnaissance satellite[J]. Changjiang Information & Communications, 2015, 28(3): 76-79 (in Chinese). | |
10 | KONOUE K, YAMAKAWA S, IMAMURA S, et al. Development of super low altitude test satellite (SLATS)[C]∥63rd International Astronautical Congress 2012 (IAC 2012), Naples: 2012. |
11 | CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica, 2008, 44(7): 1766-1780. |
12 | 樊巍. 六连胜!谷神星一号“一箭双星”发射成功[EB/OL].环球时报-环球网. (2023-07-22)[2024-08-28]. . |
FAN W. Six wins in a row! Ceres 1” One arrow double star” launch success[EB/OL]. Global Times.(2023-07-22)[2024-08-28] (in Chinese). | |
13 | 付毅飞. 我国超低轨通遥一体星座启动建设2030年将实现300颗组网运行[EB/OL]. (2023-07-12)[2024-08-28].. |
FU Y F. China’s ultra-low orbit remote intefration constellation started construction in 2030 will realize 300 networking operation[EB/OL]. Science and Technology Daily, (2023-07-12)[2024-08-28]. (in Chinese). | |
14 | WALSH J A, BERTHOUD L. Reducing spacecraft drag in very low earth orbit through shape optimization[C]∥The 7th European Conference for Aeronautics and Aerospace Sciences. Milan: EUCASS, 2017. |
15 | 黄卫东, 张育林, 分布式卫星轨道构形的大气摄动分析及修正方法 [J]. 宇航学报, 2005, 26(5): 649-652. |
HUANG W D, ZHANG Y L. Analysis of atmospheric perturbation to distributed satellites orbit configuration and its modified method[J]. Journal of Astronautics, 2005, 26(5): 649-652 (in Chinese). | |
16 | 周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348. |
ZHOU W Y, ZHANG Y L, LIU K. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31(2): 342-348 (in Chinese). | |
17 | 范才智, 虞绍听. 超低轨道卫星构型参数设计方法: CN113591214B[P]. 2022-08-26. |
FAN C Z, YU S T. Design method of configuration parameters for ultra-low orbit satellite: CN113591214B[P]. 2022-08-26 (in Chinese). | |
18 | 王晓亮, 姚小松, 高爽, 等. 超低轨卫星气动阻力特性[J]. 上海交通大学学报, 2022, 56(8): 1089-1100. |
WANG X L, YAO X S, GAO S, et al. Aerodynamic drag characteristics of ultra-low orbit satellites[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1089-1100 (in Chinese). | |
19 | 靳旭红, 黄飞, 程晓丽, 等. 内外流一体化航天器气动特性分析与减阻设计[J]. 宇航学报, 2017, 38(1): 10-17. |
JIN X H, HUANG F, CHENG X L, et al. Analysis of aerodynamic properties and drag-reduction design for spacecraft with an open orifice[J]. Journal of Astronautics, 2017, 38(1): 10-17 (in Chinese). | |
20 | 张俊, 蒋亦凡, 陈松, 等.超低轨卫星气动阻力计算与减阻设计研究综述[J]. 航空学报, 2024, 45(20): 029796. |
ZHANG J, JIANG Y F, CHEN S, et al. Overview of aerodynamic drag calculation and reduction design for Very Low Orbit satellites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 029796 (in Chinese). | |
21 | 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法[J]. 航空学报, 2017, 38(5): 105-114. |
JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo method for rapid prediction of aerodynamic properties of spacecraft in lower LEO[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 105-114 (in Chinese). | |
22 | 靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226. |
JIN X H, HUANG F, CHENG X L, et al. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3): 219-226 (in Chinese). | |
23 | PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research (Space Physics), 2002, 107(A12): 1468. |
24 | FUJITA K, NODA A. Rarefied aerodynamics of a super low altitude test satellite[C]∥ 41st AIAA Thermophysics Conference. Reston: AIAA, 2009. |
25 | JIANG Y F, ZHANG J, TIAN P, et al. Aerodynamic drag analysis and reduction strategy for satellites in Very Low Earth Orbit[J]. Aerospace Science and Technology, 2023, 132: 108077. |
/
〈 |
|
〉 |