航空发动机数字孪生专栏

考虑区间不确定性的转子叶尖间隙预测数字孪生模型

  • 张譍之 ,
  • 孙惠斌 ,
  • 颜诚 ,
  • 刘萌
展开
  • 1.西北工业大学 航空发动机高性能制造工业和信息化部重点实验室,西安 710072
    2.中国航发南方工业有限公司,株洲 412002
.E-mail: sun_huibin@nwpu.edu.cn

收稿日期: 2023-10-27

  修回日期: 2023-11-21

  录用日期: 2024-01-10

  网络出版日期: 2024-04-03

基金资助

国家科技重大专项(J2022-VII-0001-0043);中央高校基本科研业务费专项资金;国家自然科学基金(52475540)

A digital twin model for rotor tip clearance prediction considering interval uncertainty

  • Yingzhi ZHANG ,
  • Huibin SUN ,
  • Cheng YAN ,
  • Meng LIU
Expand
  • 1.Key Laboratory of High Performance Manufacturing for Aero-Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China
    2.AECC South Industry Company Limited,Zhuzhou 412002,China

Received date: 2023-10-27

  Revised date: 2023-11-21

  Accepted date: 2024-01-10

  Online published: 2024-04-03

Supported by

National Science and Technology Major Project of China(J2022-VII-0001-0043);Fundamental Research Funds for the Central Universities;National Natural Science Foundation of China(52475540)

摘要

为了实现不确定性条件下的转子叶尖间隙高保真建模与高精准预测,首先,分析了转静子装配过程中的不确定性来源、类型及表现形式。其次,建立了考虑区间不确定性的转子叶尖间隙预测数字孪生模型,描述了实体空间中转静子装配及测量过程,虚拟空间中的装配精度表征模型与转子叶尖间隙预测模型。再次,分别介绍了处理足量统计信息和稀疏统计信息的确定性表征模型与区间表征模型,构建了考虑不确定性的转子叶尖间隙预测模型并提出了预测更新方法。最后,以某发动机转静子装配过程为例,评价了转子叶尖间隙预测与更新的准确性和清晰度,并对比了确定性预测和不确定性预测的结果。结果表明,所提方法可实现数字孪生驱动的转静子装配过程高保真建模与高精准预测。

本文引用格式

张譍之 , 孙惠斌 , 颜诚 , 刘萌 . 考虑区间不确定性的转子叶尖间隙预测数字孪生模型[J]. 航空学报, 2024 , 45(21) : 629775 -629775 . DOI: 10.7527/S1000-6893.2024.29775

Abstract

In order to achieve high-fidelity modeling and high-precision prediction of rotor tip clearance under uncertainty conditions, this study first analyzed the sources, types, and manifestations of uncertainty in the assembly process of multistage rotor and stator assembly process. Secondly, a digital twin model for predicting rotor tip clearance considering interval uncertainty was established, describing the assembly and measurement process of multistage rotor and stator in physical space, the assembly accuracy characterization model and the rotor tip clearance prediction model in virtual space. Then, deterministic representation models and interval representation models for processing sufficient and sparse statistical information were introduced, and a rotor tip clearance prediction model and prediction update method considering uncertainty were constructed. Finally, taking a multistage rotor and stator assembly process as an example, the accuracy and clarity of rotor tip clearance prediction and update were evaluated, and the results of deterministic prediction and uncertainty prediction were compared. The results showed that the method proposed can achieve high-fidelity modeling and high-precision prediction of multistage rotor and stator assembly process driven by digital twins.

参考文献

1 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484.
  ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aero-engine assembly technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
2 郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报202344(7): 027099.
  ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty?based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica202344(7): 027099 (in Chinese).
3 王建平, 冯光涛, 赵锡芳. 机器人装配中的几何不确定性建模[J]. 上海交通大学学报200135(12): 1789-1792.
  WANG J P, FENG G T, ZHAO X F. Modeling of geometrical uncertainty in robotic assembly[J]. Journal of Shanghai Jiao Tong University200135(12): 1789-1792 (in Chinese).
4 ZHONG J, LIU J, SHI J J. Predictive control considering model uncertainty for variation reduction in multistage assembly processes[J]. IEEE Transactions on Automation Science and Engineering20107(4): 724-735.
5 CELAYA E, CREEMERS T, ROS L. Exact interval propagation for the efficient solution of position analysis problems on planar linkages[J]. Mechanism and Machine Theory201254: 116-131.
6 赵强强, 郭俊康, 洪军. 基于连杆机构旋转法则的平面单环闭链结构装配误差不确定性分析[J]. 机械工程学报201854(11): 29-38.
  ZHAO Q Q, GUO J K, HONG J. Uncertainty analysis of assembly error of planar single-loop mechanisms based on the rotatability laws of linkages[J]. Journal of Mechanical Engineering201854(11): 29-38 (in Chinese).
7 MEI B, ZHU W D, ZHENG P Y, et al. Variation modeling and analysis with interval approach for the assembly of compliant aeronautical structures[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019233(3): 948-959.
8 杜丽, 梅标, 朱伟东, 等. 采用模糊区间分析的柔性航空结构件装配偏差预测[J]. 浙江大学学报(工学版)201953(9): 1647-1655.
  DU L, MEI B, ZHU W D, et al. Assembly variation prediction for compliant aeronautical structures using fuzzy interval analysis[J]. Journal of Zhejiang University (Engineering Science)201953(9): 1647-1655 (in Chinese).
9 邹昌利, 张恃铭, 刘银华. 面向装配质量预测控制的随机Kriging建模方法[J]. 机械设计与研究202036(2): 108-112, 123.
  ZOU C L, ZHANG S M, LIU Y H. Study on the stochastic Kringing modeling for predictive quality control in assembly process[J]. Machine Design & Research202036(2): 108-112, 123 (in Chinese).
10 徐旭松, 刘梦, 孙志英. 空间RSSR机构的装配偏差区间分析[J]. 计算机集成制造系统202127(7): 1959-1973.
  XU X S, LIU M, SUN Z Y. Assembly deviation interval analysis of spatial RSSR mechanism[J]. Computer Integrated Manufacturing Systems202127(7): 1959-1973 (in Chinese).
11 李云, 张湘霄, 孙富强, 等. 星载SAR天线展开机构装配精度确信可靠性建模[J]. 北京航空航天大学学报202450(1): 134-143.
  LI Y, ZHANG X X, SUN F Q, et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics202450(1): 134-143 (in Chinese).
12 丁司懿, 郑小虎. 基于改进Jacobian-Torsor理论的转子组件装配精度控制方法[J]. 航空学报202142(10): 524670.
  DING S Y, ZHENG X H. Precision control of rotor assembly based on improved Jacobian-Torsor theory[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524670 (in Chinese).
13 SUN H B, WANG J, CHEN K, et al. A tip clearance prediction model for multistage rotors and stators in aero-engines[J]. Chinese Journal of Aeronautics202134(2): 343-357.
14 邓王倩, 莫蓉, 陈凯, 等. 基于实测数据的航空发动机转子叶尖装配间隙预测[J]. 航空动力学报202237(6): 1273-1283.
  DENG W Q, MO R, CHEN K, et al. Prediction of rotor blade tip assembly clearance based on measured data for aero-engine[J]. Journal of Aerospace Power202237(6): 1273-1283 (in Chinese).
15 陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统202329(1): 1-10.
  TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems202329(1): 1-10 (in Chinese).
16 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统201925(10): 2405-2418.
  TAO F, MA X, HU T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems201925(10): 2405-2418 (in Chinese).
17 ZHUANG C B, LIU J H, XIONG H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. The International Journal of Advanced Manufacturing Technology201896(1): 1149-1163.
18 易扬, 冯锦丹, 刘金山, 等. 复杂产品数字孪生装配模型表达与精度预测[J]. 计算机集成制造系统202127(2): 617-630.
  YI Y, FENG J D, LIU J S, et al. Model expression and accuracy prediction method of digital twin-based assembly for complex products[J]. Computer Integrated Manufacturing Systems202127(2): 617-630 (in Chinese).
19 孙惠斌, 颜建兴, 魏小红, 等. 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程202031(7): 833-841.
  SUN H B, YAN J X, WEI X H, et al. Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering202031(7): 833-841 (in Chinese).
20 王岭. 基于数字孪生的航空发动机低压涡轮单元体对接技术研究[J]. 计算机测量与控制201826(10): 286-290, 303.
  WANG L. Research on the docking technology of final installation for aeroengine low pressure turbine unit based on digital twin[J]. Computer Measurement & Control201826(10): 286-290, 303 (in Chinese).
21 张譍之, 孙惠斌, 周平, 等. 数字孪生驱动的转静子装配间隙动态预测与调控[J]. 计算机集成制造系统202329(6): 2035-2046.
  ZHANG Y Z, SUN H B, ZHOU P, et al. Digital twin-driven dynamic prediction and control method for assembly clearance of multi-stage rotor and stator[J]. Computer Integrated Manufacturing Systems202329(6): 2035-2046 (in Chinese).
22 杨乐昌, 汪晨星. 基于多源异构信息的航空发动机转子参数校准与可靠性分析[J]. 航空学报202344(23): 228575.
  YANG L C, WANG C X. Parameter calibration and reliability analysis of an aero-engine rotor based on multi-source heterogeneous information[J]. Acta Aeronautica et Astronautica Sinica202344(23): 228575 (in Chinese).
23 张鹏, 刘晓健, 张树有, 等. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版)201953(3): 435-443.
  ZHANG P, LIU X J, ZHANG S Y, et al. Sparse hybrid uncertain variable optimization method and application[J]. Journal of Zhejiang University (Engineering Science)201953(3): 435-443 (in Chinese).
24 高原, 王晓伟, 杨志强. 螺栓连接不确定性对机匣动力学特征影响研究[J]. 机械制造与自动化202352(3): 37-40.
  GAO Y, WANG X W, YANG Z Q. Research on influence of uncertainty of bolt connection on dynamic characteristics of casing [J]. Machine Building and Automation202352(3): 37-40 (in Chinese).
25 意)弗朗西斯科·蒙托莫利. 不确定性量化在航空发动机中的应用[M]. 高丽敏, 马驰, 译. 北京: 国防工业出版社, 2020: 40-45.
  MONTOMOLI F. Uncertainty quantification in computational fluid dynamics and aircraft engines[M]. GAO L M, MA C, translated. Beijing: National Defense Industry Press, 2020: 40-45 (in Chinese).
26 杜海雷, 孙惠斌, 黄健, 等. 面向装配精度的航空发动机转子零件选配优化[J]. 计算机集成制造系统202127(5): 1292-1299.
  DU H L, SUN H B, HUANG J, et al. Optimizing aero-engine rotor part matching considering assembly accuracy[J]. Computer Integrated Manufacturing Systems202127(5): 1292-1299 (in Chinese).
文章导航

/