某型航空发动机涡轮导向叶片热障涂层可靠性分析
收稿日期: 2024-01-11
修回日期: 2024-02-19
录用日期: 2024-03-18
网络出版日期: 2024-03-25
基金资助
天津市研究生科研创新项目(2021YJSO2B08)
Reliability analysis of thermal barrier coatings on turbine guide vanes of a certain type of aero-engine
Received date: 2024-01-11
Revised date: 2024-02-19
Accepted date: 2024-03-18
Online published: 2024-03-25
Supported by
Tianjin Graduate Student Research and Innovation Program(2021YJSO2B08)
针对某型民用航空发动机涡轮导向叶片热障涂层的可靠性进行了研究,建立了基于运行条件的叶片表面温度分布模型和基于温度分布的涂层失效模型,并采用Monte-Carlo模拟法计算了涡轮导向叶片热障涂层在不同服役时间和温度下的失效概率,预测了涡轮导向叶片服役寿命并与实际服役结果进行比较。结果表明:热障涂层的最大失效概率区域位于涡轮导向叶片的前缘和叶盆区域。以60%的失效概率为完全失效界限,在热气流作用下,叶片前缘区域的热障涂层平均寿命只有3 857 h,叶盆区域的平均寿命为7 584 h,叶背和后缘区域的平均寿命可达到104 h以上。模拟计算服役可靠度与涡轮导向叶片实际检测结果的吻合度随服役时间变化始终保持在60%以上,证明使用的可靠性评价方法具有可信度和实用性。
王者 , 王志平 , 丁坤英 , 张涛 , 王远航 . 某型航空发动机涡轮导向叶片热障涂层可靠性分析[J]. 航空学报, 2024 , 45(22) : 430141 -430141 . DOI: 10.7527/S1000-6893.2024.30141
The reliability of the thermal barrier coating on the turbine guide blades of a certain civil aviation engine was studied, the blade surface temperature distribution model based on operating conditions, and the coating failure model based on temperature distribution were established. Moreover, the failure probability of the thermal barrier coating on the turbine guide blades at different service times and temperatures was calculated by Monte-Carlo simulation, the turbine guide blades’ service life was predicted and compared with the actual service results. The results show that the maximum failure probability of the thermal barrier coating is located at the leading edge of the turbine guide blade and the blade basin area. With 60% failure probability as the limit of complete failure, the average life of the thermal barrier coating in the leading edge region of the blade is only 3 857 h, the average life of the leaf basin region is 7 584 h, and the average life of the backside and trailing edge regions of the blade is more than 104 h under the action of hot air flow. The agreement between the simulated service reliability and the actual inspection results of the turbine guided blades with the change of service time always stays above 60%, which proves that the reliability evaluation method used has credibility and practicality.
1 | 尚勇, 冯阳, 刘巧沐, 等. 大型科学装置在航空发动机高温结构材料和涂层上的研究与应用综述[J]. 航空学报, 2022, 43(10): 527481. |
SHANG Y, FENG Y, LIU Q M, et al. Research and application of large scientific facility on high-temperature structural materials and coatings of aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527481 (in Chinese). | |
2 | YU C T, XIE H Q, LI S, et al. Thermal cycling and interface bonding performance of single phase (Ni, Pt)Al coating with and without pure metastable tetragonal phase 4YSZ[J]. Applied Surface Science, 2023, 615: 156326. |
3 | XIAO Y Q, YANG L, ZHU W, et al. Delamination mechanism of thermal barrier coatings induced by thermal cycling and growth stresses[J]. Engineering Failure Analysis, 2021, 121: 105202. |
4 | ZHU J G, MAO Z Z, WU D L, et al. Progress and trends in non-destructive testing for thermal barrier coatings based on infrared thermography: A review[J]. Journal of Nondestructive Evaluation, 2022, 41(3): 49. |
5 | 刘延宽, 袁航, 李顶河, 等. 热老化对热障涂层界面力学性能影响及数值计算[J]. 航空学报, 2023, 44(20): 428507. |
LIU Y K, YUAN H, LI D H, et al. Effect of thermal aging on mechanical properties of thermal barrier coatings interface and numerical calculation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 428507 (in Chinese). | |
6 | 姚玉东, 艾延廷, 宋春, 等. 热障涂层二向应力状态分析与危险点预测[J]. 航空学报, 2022, 43(1): 424937. |
YAO Y D, AI Y T, SONG C, et al. Prediction of dangerous point of thermal barrier coating by biaxial stress state analysis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 424937 (in Chinese). | |
7 | 杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略[J]. 航空学报, 2022, 43(10): 527613. |
YANG S J, YAN X D, GUO H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527613 (in Chinese). | |
8 | EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553. |
9 | XIAO Y Q, LIU Z Y, PENG X M, et al. Spallation mechanism of thermal barrier coatings with real interface morphology considering growth and thermal stresses based on fracture phase field[J]. Surface and Coatings Technology, 2023, 458: 129356. |
10 | BUSSO E P, WRIGHT L, EVANS H E, et al. A physics-based life prediction methodology for thermal barrier coating systems[J]. Acta Materialia, 2007, 55(5): 1491-1503. |
11 | BUSSO E P, LIN J, SAKURAI S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system[J]. Acta Materialia, 2001, 49(9): 1529-1536. |
12 | HE M Y, HUTCHINSON J W, EVANS A G. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling[J]. Materials Science and Engineering: A, 2003, 345(1-2): 172-178. |
13 | NORDHORN C, MüCKE R, MACK D E, et al. Probabilistic lifetime model for atmospherically plasma sprayed thermal barrier coating systems[J]. Mechanics of Materials, 2016, 93: 199-208. |
14 | GUO J W, YANG L, ZHOU Y C, et al. Reliability assessment on interfacial failure of thermal barrier coatings[J]. Acta Mechanica Sinica, 2016, 32(5): 915-924. |
15 | LIU Z Y, YANG L, ZHOU Y C. A multiscale model integrating artificial neural networks for failure prediction in turbine blade coatings[J]. Surface and Coatings Technology, 2023, 457: 129218. |
16 | 韩志勇, 张涛, 郭万森, 等. 服役环境对涡轮导向叶片热障涂层失效模式的影响[J]. 表面技术, 2023, 52(4): 261-271. |
HAN Z Y, ZHANG T, GUO W S, et al. Effects of service environment on failure modes of thermal barrier coatings on turbine guide blades[J]. Surface Technology, 2023, 52(4): 261-271 (in Chinese). | |
17 | WANG Z P, WANG Z, ZHANG T, et al. Reliability evaluation of thermal barrier coatings for engine combustion chambers based on Monte-Carlo simulation[J]. Surface and Coatings Technology, 2022, 448: 128923. |
18 | SHEN Q, YANG L, ZHOU Y C, et al. Effects of growth stress in finite-deformation thermally grown oxide on failure mechanism of thermal barrier coatings[J]. Mechanics of Materials, 2017, 114: 228-242. |
19 | WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. Journal of Advanced Ceramics, 2022, 11(7): 985-1068. |
20 | LUO L R, CHEN Y, ZHOU M, et al. Progress update on extending the durability of air plasma sprayed thermal barrier coatings[J]. Ceramics International, 2022, 48(13): 18021-18034. |
21 | SONG J B, WANG L S, DONG H, et al. Long lifespan thermal barrier coatings overview: Materials, manufacturing, failure mechanisms, and multiscale structural design[J]. Ceramics International, 2023, 49(1): 1-23. |
22 | HUANG J B, CHU X, YANG T, et al. Achieving high anti-sintering performance of plasma-sprayed YSZ thermal barrier coatings through pore structure design[J]. Surface and Coatings Technology, 2022, 435: 128259. |
23 | WANG K, PENG H, GUO H B, et al. Effect of sintering on thermal conductivity and thermal barrier effects of thermal barrier coatings[J]. Chinese Journal of Aeronautics, 2012, 25(5): 811-816. |
24 | WEI Z Y, CAI H N, ZHAO S D, et al. Dynamic multi-crack evolution and coupling TBC failure together induced by continuous TGO growth and ceramic sintering[J]. Ceramics International, 2022, 48(11): 15913-15924. |
25 | DOLEKER K M, OZGURLUK Y, KARAOGLANLI A C. TGO growth and kinetic study of single and double layered TBC systems[J]. Surface and Coatings Technology, 2021, 415: 127135. |
26 | DANIEL J R. The effect of bond coat oxidation on the microstructure and endurance of two thermal barrier coating systems[D]. Birmingham: University of Birmingham, 2010. |
27 | RABIEI A. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2000, 48(15): 3963-3976. |
28 | DANZER R, SUPANCIC P, PASCUAL J, et al. Fracture statistics of ceramics-Weibull statistics and deviations from Weibull statistics[J]. Engineering Fracture Mechanics, 2007, 74(18): 2919-2932. |
/
〈 |
|
〉 |