综述

无人机仿鸟群协同控制发展现状及关键技术

  • 何明 ,
  • 陈浩天 ,
  • 韩伟 ,
  • 邓成 ,
  • 段海滨
展开
  • 1.中国人民解放军陆军工程大学 指挥控制工程学院,南京 210007
    2.中国人民解放军32180部队,北京 100071
    3.西安电子科技大学 电子工程学院,西安 710126
    4.北京航空航天大学 自动化科学与电气工程学院,北京 100191
.E-mail: heming@aeu.edu.cn

收稿日期: 2023-12-06

  修回日期: 2023-12-27

  录用日期: 2024-03-15

  网络出版日期: 2024-03-25

基金资助

国家自然科学基金(62273356);国家人才项目(2022-JCJQ-ZQ-001);江苏省重点研发计划(BE2021729);高层次人才创新工程(KYZYJQJY2101)

Development status and key technologies of cooperative control of bird-inspired UAV swarms

  • Ming HE ,
  • Haotian CHEN ,
  • Wei HAN ,
  • Cheng DENG ,
  • Haibin DUAN
Expand
  • 1.Command and Control Engineering College,Army Engineering University of PLA,Nanjing 210007,China
    2.Troops 32180 of PLA,Beijing 100071,China
    3.School of Electronic Engineering,Xidian University,Xi’an 710126,China
    4.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
E-mail: heming@aeu.edu.cn

Received date: 2023-12-06

  Revised date: 2023-12-27

  Accepted date: 2024-03-15

  Online published: 2024-03-25

Supported by

National Natural Science Foundation of China(62273356);National Talent Project of China(2022-JCJQ-ZQ-001);Provincial Primary Research & Development Plan of Jiangsu(BE2021729);High-level Talents Innovation Project(KYZYJQJY2101)

摘要

无人机(UAV)集群已在灾害救援、侦察监视、反恐维稳等领域得到了广泛应用,以“集群智能”技术为主的高度自主智能化无人机集群已成为世界各国的关注热点。鸟群具有高自主性和鲁棒性的特点,仿鸟群智能行为,将其行为规律映射到无人机集群系统,是解决无人机集群协同控制难题的重要手段。为更好指导无人机集群技术及理论创新,对无人机仿鸟群协同控制发展现状、关键技术和未来发展展开综述。首先,介绍国内外无人机集群典型项目及主要进展;其次,从内部结构—交互方式—行为机制3个层次梳理鸟群研究现状,总结了仿鸟群分层控制、仿鸟群交互控制和仿鸟群行为控制3项无人机仿鸟群协同控制关键技术及面临的挑战;再次,面向无人机集群协同控制发展需求,提出无人机仿鸟群行为相变控制技术;最后,展望无人机仿鸟群协同控制未来趋势,以期为未来无人机集群发展提供思路和依据。

本文引用格式

何明 , 陈浩天 , 韩伟 , 邓成 , 段海滨 . 无人机仿鸟群协同控制发展现状及关键技术[J]. 航空学报, 2024 , 45(20) : 29946 -029946 . DOI: 10.7527/S1000-6893.2024.29946

Abstract

Unmanned Aerial Vehicle (UAV) swarms have been widely used in disaster relief, reconnaissance and surveillance, anti-terrorism and stability maintenance and many other fields, and highly autonomous intelligent UAV swarms based on “swarm intelligence” have become a hot spot all over the world. Birds have the characteristics of high autonomy and robustness; therefore, it is an important way to solve the cooperative control problems of UAVS swarms by mapping the birds’ behavior rules to UAVS swarm systems. In order to better guide the innovation of technology and theory of UAV swarms, this paper summarizes the research status, key technologies and future development of cooperative control of bird-inspired UAV swarms. Firstly, typical projects and main progress of UAV swarms at home and abroad are introduced. Secondly, the development status of bird flocks is reviewed from three levels: internal structures, interaction rules and behavior mechanisms. Besides, the research status and challenges of cooperative control of bird-inspired UAV swarms is summarized and analyzed in bird-inspired hierarchical control, bird-inspired interaction control and bird-inspired behavior control, respectively. Then, for the future development of cooperative control of UAV swarms, a new technology, which is called phase transition control of swarm behavior for bird-inspired UAV swarms, is proposed. Finally, the trend of cooperative control of bird-inspired UAV swarms is prospected, to provide ideas and basis for the development of UAV swarms in the future.

参考文献

1 WAN Y T, ZHONG Y F, MA A L, et al. An accurate UAV 3-D path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm[J]. IEEE Transactions on Cybernetics202353(4): 2658-2671.
2 WU H S, LI H, XIAO R B. A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation[J]. Journal of Systems Engineering and Electronics202132(5): 1180-1199.
3 张岱峰, 段海滨, 范彦铭. 仿狼群狩猎空间交互机制的无人机集群合围控制[J]. 中国科学: 技术科学202252(10): 1555-1570.
  ZHANG D F, DUAN H B, FAN Y M. UAV swarm containment control inspired by spatial interaction mechanism of wolf-pack foraging[J]. Scientia Sinica (Technologica)202252(10): 1555-1570 (in Chinese).
4 PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms[J]. Neural Computing and Applications202234(1): 153-170.
5 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术202143(1): 99-111.
  JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics202143(1): 99-111 (in Chinese).
6 FABRA F, VEGNI A M, LOSCRí V, et al. Collision-free cooperative unmanned aerial vehicle protocols for sustainable aerial services[J]. IET Smart Cities20224(4): 231-238.
7 MEHTA A. Pentagon launches 103 unit drone swa-rm[EB/OL]. (2017-01-17)[2023-12-06]. .
8 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报202243(S1): 726908.
  LIU L, LIU D W, WANG X G, et al. Development status and prospect of UAV cluster and anti-UAV cluster[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726908 (in Chinese).
9 DEFENSE D O. Autonomous multi-domain adaptiv-e swarms-of-swarms (AMASS)[EB/OL]. (2022-11-28)[2023-12-06]. .
10 李磊, 王彤, 胡勤莲, 等. DARPA拒止环境中协同作战项目白军网络研究[J]. 航天电子对抗201834(6): 54-59.
  LI L, WANG T, HU Q L, et al. White force network in DARPA CODE program[J]. Aerospace Electronic Warfare201834(6): 54-59 (in Chinese).
11 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报202041(4): 023732.
  WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astronautica Sinica202041(4): 023732 (in Chinese).
12 HE H X, DUAN H B. A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV[J]. Chinese Journal of Aeronautics202235(1): 19-30.
13 LIU X H, ZHANG Y, DUAN H B. Unmanned aerial vehicle cargo delivery assignment via time-varying constriction pigeon-inspired optimization with memory retrospection[C]∥2023 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2023: 537-542.
14 YUAN G S, XIA J, DUAN H B. A continuous modeling method via improved pigeon-inspired optimization for wake vortices in UAVs close formation flight[J]. Aerospace Science and Technology2022120: 107259.
15 YUAN Y, DENG Y M, LUO S D, et al. Hybrid formation control framework for solar-powered quadrotors via adaptive fission pigeon-inspired optimization[J]. Aerospace Science and Technology2022126: 107564.
16 DUAN H B, HUO M Z, YANG Z Y, et al. Predator-prey pigeon-inspired optimization for UAV ALS longitudinal parameters tuning[J]. IEEE Transactions on Aerospace and Electronic Systems201955(5): 2347-2358.
17 DUAN H B, XIN L, XU Y, et al. Eagle-vision-inspired visual measurement algorithm for uav’s autonomous landing[J]. International Journal of Robotics and Automation202035(2): 94-100.
18 DUAN H B, XU X B, DENG Y M, et al. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism[J]. IEEE Transactions on Aerospace and Electronic Systems202157(5): 3368-3382.
19 HUO M Z, DUAN H B, HE H X, et al. Data-driven parameter estimation for VTOL UAV using opposition-based pigeon-inspired optimization algorithm[C]∥2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2021: 669-674.
20 QIU H X, DUAN H B. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles[J]. Information Sciences2020509: 515-529.
21 禹明刚, 陈瑾, 何明, 等. 基于演化博弈的社团网络无人集群协同机制[J]. 中国科学: 技术科学202353(2): 221-242.
  YU M G, CHEN J, HE M, et al. Cooperative evolution mechanism of multiclustered unmanned swarm on community networks[J]. Scientia Sinica (Technologica)202353(2): 221-242 (in Chinese).
22 张婷婷, 宋爱国, 蓝羽石. 集群无人系统自适应结构建模与预测[J]. 中国科学: 信息科学202050(3): 347-362.
  ZHANG T T, SONG A G, LAN Y S. Adaptive structure modeling and prediction for swarm unmanned system[J]. Scientia Sinica (Informationis)202050(3): 347-362 (in Chinese).
23 孙佳琛, 王金龙, 陈瑾, 等. 群体智能协同通信: 愿景、模型和关键技术[J]. 中国科学: 信息科学202050(3): 307-317.
  SUN J C, WANG J L, CHEN J, et al. Cooperative communication based on swarm intelligence: Vision, model, and key technology[J]. Scientia Sinica (Informationis)202050(3): 307-317 (in Chinese).
24 LONG X Q, GAO F. Cooperative attack based on small-unit UAV swarms formation with trajectory tracking[J]. Journal of Intelligent & Fuzzy Systems202345(2): 2949-2965.
25 WANG Z Q, LI J, LI J, et al. A decentralized decision-making algorithm of UAV swarm with information fusion strategy[J]. Expert Systems with Applications2024237: 121444.
26 GAO Y, LI D S. Unmanned aerial vehicle swarm distributed cooperation method based on situation awareness consensus and its information processing mechanism[J]. Knowledge-Based Systems2020188: 105034.
27 HAI X S, QIU H X, WEN C Y, et al. A novel distributed situation awareness consensus approach for UAV swarm systems[J]. IEEE Transactions on Intelligent Transportation Systems202324(12): 14706-14717.
28 LIZZIO F F, CAPELLO E, GUGLIERI G. A review of consensus-based multi-agent UAV implementations[J]. Journal of Intelligent & Robotic Systems2022106(2): 43.
29 WANG T Q, ZHAO S H, XIA Y Q, et al. Consensus control of large-scale UAV swarm based on multi-layer graph[J]. Drones20226(12): 402.
30 BAI C C, YAN P, PIAO H Y, et al. Learning-based multi-UAV flocking control with limited visual field and instinctive repulsion[J]. IEEE Transactions on Cybernetics202454(1): 462-475.
31 HE T, WANG L. Neural network-based velocity-controllable UAV flocking[J]. The Aeronautical Journal2023127(1308): 289-304.
32 WU J H, YU Y Z, MA J, et al. Autonomous cooperative flocking for heterogeneous unmanned aerial vehicle group[J]. IEEE Transactions on Vehicular Technology202170(12): 12477-12490.
33 YAN P, BAI C C, ZHENG H X, et al. Flocking control of UAV swarms with deep reinforcement leaming approach[C]∥2020 3rd International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2020: 592-599.
34 HU J Y, NIU H L, CARRASCO J, et al. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring[J]. Aerospace Science and Technology2022123: 107494.
35 WANG H B, CHEN M, FU P. A distributed fault-tolerant mechanism for mission-oriented unmanned aerial vehicle swarms[J]. International Journal of Communication Systems202134(8): e4789.
36 WU X J, JIN Y T, ZHEN R. Fault-tolerant time-varying formation tracking control for unmanned aerial vehicle swarm systems with switching topologies and a leader of unknown control input[C]∥2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS). Piscataway: IEEE Press, 2021: 265-270.
37 ZHAO T F, SONG S Y. A fault-tolerant topology control algorithm for wireless ultraviolet light covert communication network in cluster UAV[J]. Photonic Network Communications202142(1): 40-48.
38 LEE S M, SHIN M, SON H. Robust predictor-based control for multirotor UAV with various time delays[J]. IEEE Transactions on Industrial Electronics202370(8): 8151-8162.
39 ZHAI W B, LIU L, DING Y W, et al. ETD: An efficient time delay attack detection framework for UAV networks[J]. IEEE Transactions on Information Forensics and Security202318: 2913-2928.
40 DONG Q, LIU Z B. Formation control for unmanned aerial vehicle swarm with disturbances: A mission-driven control scheme[J]. Optimal Control Applications and Methods202344(3): 1441-1462.
41 RAN M P, LI J C, XIE L H. Active disturbance rejection time-varying formation tracking for unmanned aerial vehicles[C]∥2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). Piscataway: IEEE Press, 2020: 1298-1303.
42 ZHANG J L, ZHANG P, YAN J G. Distributed adaptive finite-time compensation control for UAV swarm with uncertain disturbances[J]. IEEE Transactions on Circuits and Systems I: Regular Papers202168(2): 829-841.
43 TANG J, DUAN H B, LAO S Y. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review[J]. Artificial Intelligence Review202356(5): 4295-4327.
44 HU J W, WANG T, ZHANG H Z, et al. A review of rule-based collision avoidance technology for autonomous UAV[J]. Science China Technological Sciences202366(9): 2481-2499.
45 LUO L B, WANG X Y, MA J F, et al. GrpAvoid: Multigroup collision-avoidance control and optimization for UAV swarm[J]. IEEE Transactions on Cybernetics202353(3): 1776-1789.
46 DENTLER J, ROSALIE M, DANOY, G, et al. Collision avoidance effects on the mobility of a UAV swarm using chaotic ant colony with model predictive control[J]. Journal of Intelligent & Robotic Systems201993: 227-243.
47 FU X W, ZHI C Y, WU D. Obstacle avoidance and collision avoidance of UAV swarm based on improved VFH algorithm and information sharing strategy[J]. Computers & Industrial Engineering2023186: 109761.
48 PAN H Y, LIU Y H, SUN G, et al. Joint power and 3D trajectory optimization for UAV-enabled wireless powered communication networks with obstacles[J]. IEEE Transactions on Communications202371(4): 2364-2380.
49 PUENTE-CASTRO A, RIVERO D, PEDROSA E, et al. Q-Learning based system for path planning with unmanned aerial vehicles swarms in obstacle environments[J]. Expert Systems with Applications2024235: 121240.
50 HE W J, QI X G, LIU L F. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning[J]. Applied Intelligence202151(10): 7350-7364.
51 LU C, LV Y T, SU Y Z, et al. UAV swarm collaborative path planning based on RB-ABC[C]∥2022 9th International Forum on Electrical Engineering and Automation (IFEEA). Piscataway: IEEE Press, 2022: 627-632.
52 PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. UAV swarm path planning with reinforcement learning for field prospecting[J]. Applied Intelligence202252(12): 14101-14118.
53 SAEED R A, OMRI M, ABDEL-KHALEK S, et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications202234(12): 10133-10155.
54 MA Z Y, CHEN J. Adaptive path planning method for UAVs in complex environments[J]. International Journal of Applied Earth Observation and Geoinformation2022115: 103133.
55 XIAO T L, YANG Q, GAO X D, et al. Variation encoded large-scale swarm optimizers for path planning of unmanned aerial vehicle[C]∥Genetic and Evolutionary Computation Conference. New York: ACM, 2023: 102-110.
56 XU L, CAO X B, DU W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems2023260: 110164.
57 HUA X, WANG Z, YAO H J, et al. Research on many-to-many target assignment for unmanned aerial vehicle swarm in three-dimensional scenarios[J]. Computers & Electrical Engineering202191: 107067.
58 LI Y, XU Y, XUE X Y, et al. Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution[J]. Biosystems Engineering2022214: 177-192.
59 LIU B, WANG S L, LI Q H, et al. Task assignment of UAV swarms based on deep reinforcement learning[J]. Drones20237(5): 297.
60 WANG Z H, ZHANG J L. A task allocation algorithm for a swarm of unmanned aerial vehicles based on bionic wolf pack method[J]. Knowledge-Based Systems2022250: 109072.
61 WU Y, LIANG T J, GOU J Z, et al. Heterogeneous mission planning for multiple UAV formations via metaheuristic algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems202359(4): 3924-3940.
62 WUBBEN J, HERNáNDEZ D, CECILIA J M, et al. Assignment and take-off approaches for large-scale autonomous UAV swarms[J]. IEEE Transactions on Intelligent Transportation Systems202324(5): 4836-4847.
63 GAO C Y, MA J F, LI T, et al. Hybrid swarm intelligent algorithm for multi-UAV formation reconfiguration[J]. Complex & Intelligent Systems20239(2): 1929-1962.
64 LI B, ZHANG J W, DAI L, et al. A hybrid offline optimization method for reconfiguration of multi-UAV formations[J]. IEEE Transactions on Aerospace and Electronic Systems202157(1): 506-520.
65 LIU H X, LIU F, ZHANG X J, et al. A formation reconfiguration algorithm for multi-UAVs based on distributed cooperative coevolutionary with an adaptive grouping strategy[J]. Chinese Journal of Electronics202029(5): 841-851.
66 WUBBEN J, AZNAR P, FABRA F, et al. Toward secure, efficient, and seamless reconfiguration of UAV swarm formations[C]∥2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). Piscataway: IEEE Press, 2020: 1-7.
67 WUBBEN J, FABRA F, CALAFATE C T, et al. A novel resilient and reconfigurable swarm management scheme[J]. Computer Networks2021194: 108119.
68 CHEN H T, HE M, LIU J T, et al. A novel fractional-order flocking algorithm for large-scale UAV swarms[J]. Complex & Intelligent Systems20239(6): 6831-6844.
69 YAN C, XIANG X J, WANG C, et al. PASCAL: Population-specific curriculum-based MADRL for collision-free flocking with large-scale fixed-wing UAV swarms[J]. Aerospace Science and Technology2023133: 108091.
70 WANG W, WANG L, WU J F, et al. Oracle-guided deep reinforcement learning for large-scale multi-UAVs flocking and navigation[J]. IEEE Transactions on Vehicular Technology202271(10): 10280-10292.
71 PAN Z H, XIA Y Q, SUN Z Q, et al. Multilayer self-organized aggregation control for large-scale unmanned aerial vehicle swarms[J]. International Journal of Robust and Nonlinear Control202333(10): 5420-5436.
72 VIRáGH C, VáSáRHELYI G, TARCAI N, et al. Flocking algorithm for autonomous flying robots[J]. Bioinspiration & Biomimetics20149(2): 025012.
73 YONG E. Autonomous drones flock like birds[EB/OL]. (2014-2-26)[2023-12-06]. .
74 VáSáRHELYI G, VIRáGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics20183(20): eaat3536.
75 ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild[J]. Science Robotics20227(66): eabm5954.
76 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018: 13-23.
  DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing: Science Press, 2018: 13-23 (in Chinese).
77 NAGY M, áKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature2010464: 890-893.
78 ZHANG H T, CHEN Z Y, VICSEK T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks[J]. Scientific Reports20144: 5805.
79 CHEN D X, VICSEK T, LIU X L, et al. Switching hierarchical leadership mechanism in homing flight of pigeon flocks[J]. EPL (Europhysics Letters)2016114(6): 60008.
80 CHEN D X, WANG Y C, WU G, et al. Inferring causal relationship in coordinated flight of pigeon flocks[J]. Chaos201929(11): 113118.
81 FLACK A, PETTIT B, FREEMAN R, et al. What are leaders made of? The role of individual experience in determining leader-follower relations in homing pigeons[J]. Animal Behaviour201283(3): 703-709.
82 FLACK A, áKOS Z, NAGY M, et al. Robustness of flight leadership relations in pigeons[J]. Animal Behaviour201386(4): 723-732.
83 LIU X Y, YAN C, ZHOU H, et al. Towards flocking navigation and obstacle avoidance for multi-UAV systems through hierarchical weighting vicsek model[J]. Aerospace20218(10): 286.
84 LIU X Y, XIANG X J, CHANG Y, et al. Hierarchical weighting vicsek model for flocking navigation of drones[J]. Drones20215(3): 74.
85 PETTIT B, áKOS Z, VICSEK T, et al. Speed determines leadership and leadership determines learning during pigeon flocking[J]. Current Biology201525(23): 3132-3137.
86 SASAKI T, BIRO D. Cumulative culture can emerge from collective intelligence in animal groups[J]. Nature Communications20178: 15049.
87 SASAKI T, MANN R P, WARREN K N, et al. Personality and the collective: Bold homing pigeons occupy higher leadership ranks in flocks[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2018373(1746): 20170038.
88 CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control200752(5): 852-862.
89 EVANGELISTA D J, RAY D D, RAJA S K, et al. Three-dimensional trajectories and network analyses of group behaviour within chimney swift flocks during approaches to the roost[J]. Proceedings of the Royal Society B: Biological Sciences2017284(1849): 20162602.
90 BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the National Academy of Sciences of the United States of America2008105(4): 1232-1237.
91 CAVAGNA A, CIMARELLI A, GIARDINA I, et al. From empirical data to inter-individual interactions: Unveiling the rules of collective animal behavior[J]. Mathematical Models and Methods in Applied Sciences201020(supp01): 1491-1510.
92 CAMPERI M, CAVAGNA A, GIARDINA I, et al. Spatially balanced topological interaction grants optimal cohesion in flocking models[J]. Interface Focus20122(6): 715-725.
93 SHANG Y L, BOUFFANAIS R. Influence of the number of topologically interacting neighbors on swarm dynamics[J]. Scientific Reports20144: 4184.
94 CHEN C, CHEN G, GUO L. Consensus of flocks under M-nearest-neighbor rules[J]. Journal of Systems Science and Complexity201528(1): 1-15.
95 WANG L, CHEN G R. Synchronization of multi-agent systems with metric-topological interactions[J]. Chaos201626(9): 094809.
96 KUMAR V, DE R M. Efficient flocking: Metric versus topological interactions[J]. Royal Society Open Science20218(9): 202158.
97 LIU J T, HE M, XU P, et al. Pairwise control in swarm flocking with application to UAVs[J]. Engineering Applications of Artificial Intelligence2022114: 105023.
98 LING H J, MCLVOR G E, VAN DER VAART K, et al. Costs and benefits of social relationships in the collective motion of bird flocks[J]. Nature Ecology & Evolution20193: 943-948.
99 LING H J, MCLVOR G E, WESTLEY J, et al. Behavioural plasticity and the transition to order in jackdaw flocks[J]. Nature Communications201910: 5174.
100 ANDERSSON M, WALLANDER J. Kin selection and reciprocity in flight formation?[J]. Behavioral Ecology200415(1): 158-162.
101 BAJEC I L, HEPPNER F H. Organized flight in birds[J]. Animal Behaviour200978(4): 777-789.
102 LISSAMAN P B, SHOLLENBERGER C A. Formation flight of birds[J]. Science1970168(3934): 1003-1005.
103 WEIMERSKIRCH H, MARTIN J, CLERQUIN Y, et al. Energy saving in flight formation[J]. Nature2001413: 697-698.
104 REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[C]∥Proceedings of the 14th annual conference on Computer graphics and interactive techniques. New York: ACM, 1987: 25-34.
105 VICSEK T, CZIRóK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters199575(6): 1226-1229.
106 COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology2002218(1): 1-11.
107 WANG X, LU J H. Collective behaviors through social interactions in bird flocks[J]. IEEE Circuits and Systems Magazine201919(3): 6-22.
108 ATTANASI A, CAVAGNA A, DEL CASTELLO L, et al. Information transfer and behavioural inertia in starling flocks[J]. Nature Physics201410: 691-696.
109 LING H J, MCLVOR G E, WESTLEY J, et al. Collective turns in jackdaw flocks: Kinematics and information transfer[J]. Journal of the Royal Society, Interface, 201916(159): 20190450.
110 PAPADOPOULOU M, HILDENBRANDT H, SANKEY D W E, et al. Emergence of splits and collective turns in pigeon flocks under predation[J]. Royal Society Open Science20229(2): 211898.
111 邱华鑫, 段海滨. 从鸟群群集飞行到无人机自主集群编队[J]. 工程科学学报201739(3): 317-322.
  QIU H X, DUAN H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering201739(3): 317-322 (in Chinese).
112 WANG X, CHEN H, ZHAO S. Formation control of large-scale fixed-wing unmanned aerial vehicle swarms[J]. Control and Decision202136(9): 2063-2073.
113 CHEN H, WANG X K, SHEN L C, et al. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach[J]. Chinese Journal of Aeronautics202134(2): 504-515.
114 ZHAO J, SUN J M, CAI Z H, et al. Distributed coordinated control scheme of UAV swarm based on heterogeneous roles[J]. Chinese Journal of Aeronautics202235(1): 81-97.
115 XU X P, YAN X T, YANG W Y, et al. Algorithms and applications of intelligent swarm cooperative control: A comprehensive survey[J]. Progress in Aerospace Sciences2022135: 100869.
116 WU J, LUO C B, LUO Y, et al. Distributed UAV swarm formation and collision avoidance strategies over fixed and switching topologies[J]. IEEE Transactions on Cybernetics202252(10): 10969-10979.
117 XIONG H, DING Y Z, LIU J Z. Compact and ordered swarms of unmanned aerial vehicles in cluttered environments[J]. Bioinspiration & Biomimetics202318(5): 056006.
118 LIAO J, CHENG J, XIN B, et al. UAV swarm formation reconfiguration control based on variable-stepsize MPC-APCMPIO algorithm[J]. Science China Information Sciences202366(11): 212207.
119 WU J F, WANG H L, LI N, et al. Formation obstacle avoidance: A fluid-based solution[J]. IEEE Systems Journal202014(1): 1479-1490.
120 SARKAR N, DEB A K. Neuroadaptive distributed sliding mode formation control of UAVs: A more simple approach[J]. International Journal of Control, Automation and Systems202321(10): 3470-3483.
121 LIU W H, ZHENG X, DENG Z H. Dynamic collision avoidance for cooperative fixed-wing UAV swarm based on normalized artificial potential field optimization[J]. Journal of Central South University202128(10): 3159-3172.
122 ZHEN Z Y, CHEN Y, WEN L D, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology2020100: 105826.
123 LIU Y P, ZHAO X, XU J, et al. Rapid location technology of odor sources by multi-UAV[J]. Journal of Field Robotics202239(5): 600-616.
124 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用201532(10): 1298-1304.
  QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications201532(10): 1298-1304 (in Chinese).
125 LUO Q N, DUAN H B. Distributed UAV flocking control based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology201770: 257-264.
126 SHEN Y K, WEI C. Multi-UAV flocking control with individual properties inspired by bird behavior[J]. Aerospace Science and Technology2022130: 107882.
127 QIU H X, DUAN H B. Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks[J]. Aerospace Science and Technology201770: 471-486.
128 QIU H X, DUAN H B. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments[J]. ISA Transactions201771: 93-102.
129 FENG Y F, DONG J S, WANG J L, et al. Distributed flocking algorithm for multi-UAV system based on behavior method and topological communication[J]. Journal of Bionic Engineering202320(2): 782-796.
130 KONG W R, ZHOU D Y, DU Y J, et al. Hierarchical multi-agent reinforcement learning for multi-aircraft close-range air combat[J]. IET Control Theory & Applications202317(13): 1840-1862.
131 张令, 段海滨, 雍婷, 等. 基于寒鸦配对交互行为的无人机集群编队控制[J]. 北京航空航天大学学报202147(2): 391-397.
  ZHANG L, DUAN H B, YONG T, et al. Unmanned aerial vehicle swarm formation control based on paired interaction mechanism in jackdaws[J]. Journal of Beijing University of Aeronautics and Astronautics202147(2): 391-397 (in Chinese).
132 PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics200124(2): 246-254.
133 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学: 技术科学201747(3): 230-238.
  ZHOU Z W, DUAN H B, FAN Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica (Technologica)201747(3): 230-238 (in Chinese).
134 丁应和, 沈凯, 朱毅晓, 等. 仿雁群多固定翼无人机时变编队一致性控制方法[J]. 战术导弹技术2022(4): 132-138, 148.
  DING Y H, SHEN K, ZHU Y X, et al. Method of time-varying formation consistency control for multiple fixed-wing UAVs[J]. Tactical Missile Technology2022(4): 132-138, 148 (in Chinese).
135 OUYANG Q, WU Z X, CONG Y H, et al. Formation control of unmanned aerial vehicle swarms: A comprehensive review[J]. Asian Journal of Control202325(1): 570-593.
136 OLFATI-SABER R. Flocking for multi-agent dynamic systems: Algorithms and theory[J]. IEEE Transactions on Automatic Control200651(3): 401-420.
137 BEAVER L E, MALIKOPOULOS A A. An overview on optimal flocking[J]. Annual Reviews in Control202151: 88-99.
138 POOLEY A, GAO M, SHARMA A, et al. Analysis of UAV thermal soaring via hawk-inspired swarm interaction[J]. Biomimetics20238(1): 124.
139 WU W H, ZHANG X Y, MIAO Y. Starling-behavior-inspired flocking control of fixed-wing unmanned aerial vehicle swarm in complex environments with dynamic obstacles[J]. Biomimetics20227(4): 214.
140 LIU W, GAO Z J. A distributed flocking control strategy for UAV groups[J]. Computer Communications2023153: 95-101.
141 于月平, 段海滨, 范彦铭, 等. 仿欧椋鸟大规模超机动行为的无人机集群转弯控制[J]. 机器人202042(4): 385-393.
  YU Y P, DUAN H B, FAN Y M, et al. Turning control of multiple UAVs imitating the super-maneuver behavior in massive starlings[J]. Robot202042(4): 385-393 (in Chinese).
142 CAVAGNA A, DEL CASTELLO L, GIARDINA I, et al. Flocking and turning: A new model for self-organized collective motion[J]. Journal of Statistical Physics2015158(3): 601-627.
143 CRISTIANI E, MENCI M, PAPI M, et al. An all-leader agent-based model for turning and flocking birds[J]. Journal of Mathematical Biology202183(4): 45.
144 CAVAGNA A, GIARDINA I. Bird flocks as condensed matter[J]. Annual Review of Condensed Matter Physics20145: 183-207.
145 ATTANASI A, CAVAGNA A, DEL CASTELLO L, et al. Emergence of collective changes in travel direction of starling flocks from individual birds’ fluctuations[J]. Journal of the Royal Society Interface201512(108): 20150319.
146 STORMS R F, CARERE C, ZORATTO F, et al. Complex patterns of collective escape in starling flocks under predation[J]. Behavioral Ecology and Sociobiology201973(1): 10.
147 BASTIEN R, ROMANCZUK P. A model of collective behavior based purely on vision [J]. Science Advances20206: eaay0792.
148 QI J T, BAI L, WEI Y M, et al. Emergence of adaptation of collective behavior based on visual perception[J]. IEEE Internet of Things Journal202310(12): 10368-10384.
149 XIE H, SUN M M, FAN X J, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation[J]. Science Robotics20194(28): eaav8006.
150 NAVE G K Jr, MITCHELL N T, CHAN DICK J A, et al. Attraction, dynamics, and phase transitions in fire ant tower-building[J]. Frontiers in Robotics and AI20207: 25.
151 WANG G, PHAN T V, LI S K, et al. Emergent field-driven robot swarm states[J]. Physical Review Letters2021126(10): 108002.
152 BERLINGER F, GAUCI M, NAGPAL R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm[J]. Science Robotics20216(50): eabd8668.
153 HAO Z J, MAYYA S, NOTOMISTA G, et al. Controlling collision-induced aggregations in a swarm of micro bristle robots[J]. IEEE Transactions on Robotics202339(1): 590-604.
文章导航

/