航空发动机气动热不确定性专栏

基于NIPC的非轴对称安装角不确定性分析

  • 庄皓琬 ,
  • 曹传军 ,
  • 王琰 ,
  • 滕金芳 ,
  • 朱铭敏 ,
  • 羌晓青
展开
  • 1.中国航发商用航空发动机有限责任公司,上海 200241
    2.上海交通大学 航空航天学院,上海 200240
.E-mail: tjf@sjtu.edu.cn

收稿日期: 2024-01-12

  修回日期: 2024-02-01

  录用日期: 2024-03-12

  网络出版日期: 2024-03-19

基金资助

国家科技重大专项(2017-Ⅱ-0004-0017);上海市教委专项(2023科技02-7);中央高校基本科研业务费专项资金

Uncertainty analysis of non-axisymmetric stagger angle based on NIPC

  • Haowan ZHUANG ,
  • Chuanjun CAO ,
  • Yan WANG ,
  • Jinfang TENG ,
  • Mingmin ZHU ,
  • Xiaoqing QIANG
Expand
  • 1.AECC Commercial Aircraft Engine CO. ,LTD,Shanghai  200241,China
    2.School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai  200240,China
E-mail: tjf@sjtu.edu.cn

Received date: 2024-01-12

  Revised date: 2024-02-01

  Accepted date: 2024-03-12

  Online published: 2024-03-19

Supported by

National Science and Technology Major Project (2017-Ⅱ-0004-0017);Shanghai Municipal Education Commission(2023-02-7);Fundamental Research Funds for the Central Universities

摘要

为评估叶片非轴对称安装角分布对压气机气动性能的影响,发展了一种基于非嵌入式多项式混沌法的不确定性量化方法。对具有非轴对称安装角的8通道高压压气机转子气动性能进行了不确定性量化分析,将转子性能变化定量地归因于安装角平均值变化和非均匀性的影响。结果表明,设计点处质量流量和等熵效率主要受到安装角非均匀性影响,占比分别达到65.6%和71.8%,压比则均等地受安装角平均值和非均匀性的影响。在小流量点,安装角非均匀性主要导致了质量流量和总压比的减小,占比分别达到88.2%和66.2%,等熵效率则均等地受安装角平均值和非均匀性的影响。等熵效率径向分布表明,20%以下叶高的等熵效率不确定性主要由安装角平均值变化引入,而30%左右叶高的等熵效率主要受非均匀性影响。对极端方案的性能及流场分析表明,在小流量下非轴对称安装角分布主要影响50%叶高以下的叶片等熵效率分布情况。

本文引用格式

庄皓琬 , 曹传军 , 王琰 , 滕金芳 , 朱铭敏 , 羌晓青 . 基于NIPC的非轴对称安装角不确定性分析[J]. 航空学报, 2024 , 45(19) : 630145 -630145 . DOI: 10.7527/S1000-6893.2024.30145

Abstract

An uncertainty quantification method based on the non-intrusive polynomial chaos is developed to assess the impacts of non-axisymmetric stagger angle distribution on the aerodynamic performance of compressors. Uncertainty quantification is carried out to analyze the aerodynamic performance of an eight-passage high-pressure compressor rotor with non-axisymmetric stagger angles. The changes of the rotor performance are quantificationally attributed to the variation of the average stagger angle and the nonuniformity. The results show that the mass flow rate and isentropic efficiency at the design point are mainly affected by the nonuniformity, which accounts for 65.6% and 71.8%, respectively, while the pressure ratio is evenly influenced by the average stagger angle and nonuniformity. At the small mass flow point, nonuniformity mainly leads to the decrease of mass flow rate and total pressure ratio, which account for 88.2% and 66.2%, respectively, while the isentropic efficiency is evenly influenced by the average stagger angle and nonuniformity. The radial distribution of isentropic efficiency shows that the uncertainty in isentropic efficiency of radial position below 20% span is mainly caused by the change of the average stagger angle, while the isentropic efficiency at about 30% span is mainly affected by the nonuniformity. The performance and flow field analysis of the extreme cases show that the non-axisymmetric stagger angle distribution mainly affects the isentropic efficiency below 50% span at the small flow rate.

参考文献

1 HE L, CHEN T, WELLS R G, et al. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[J]. Journal of Turbomachinery2002124(4): 564-571.
2 GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery2015137(2): 021007.
3 METHEL J, SMITH N R, BERDANIER R A, et al. Effects of circumferential nonuniformity in compressor flow fields including vane wake variability[J]. Journal of Propulsion and Power201834(4): 1080-1089.
4 LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance[J]. Journal of Engineering for Gas Turbines and Power2012134(3): 032504.
5 ZHENG S Y, TENG J F, WU Y, et al. Impact of nonuniform stagger angle distribution on high-pressure compressor rotor performance[C]∥Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. NewYork: ASME, 2018.
6 LEJON M, ANDERSSON N, ELLBRANT L, et al. The impact of manufacturing variations on performance of a transonic axial compressor rotor[C]∥Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. NewYork:ASME, 2018.
7 CLARK J P, BECK J A, KASZYNSKI A A, et al. The effect of manufacturing variations on unsteady interaction in a transonic turbine[J]. Journal of Turbomachinery2018140(6): 061007.
8 SLADOJEVI? I. Forced response analysis of aeroelastically coupled mistuned bladed disks[D]. London: Imperial College, 2006.
9 SLADOJEVIC′ I, SAYMA A I, IMREGUN M. Influence of stagger angle variation on aerodynamic damping and frequency shifts[C]∥Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. NewYork:ASME, 2009.
10 EKICI K, KIELB R E, HALL K C. Aerodynamic asymmetry analysis of unsteady flows in turbomachinery[J]. Journal of Turbomachinery2010132(1): 011006.
11 LOU F Y, MATTHEWS D R, KORMANIK N J, et al. Accounting for circumferential flow nonuniformity in a multi-stage axial compressor[C]∥Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. NewYork: ASME, 2021.
12 GHISU T, PARKS G T, JARRETT J P, et al. Adaptive polynomial chaos for gas turbine compression systems performance analysis[J]. AIAA Journal201048(6): 1156-1170.
13 WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[C]∥Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. NewYork:ASME, 2015.
14 MONTOMOLI F. Uncertainty quantification in computational fluid dynamics and aircraft engines[M]. Cham: Springer International Publishing, 2019.
15 PEPPER N, MONTOMOLI F, SHARMA S. Data fusion for uncertainty quantification with non-intrusive polynomial chaos[J]. Computer Methods in Applied Mechanics and Engineering2021374: 113577.
16 WANG K, CHEN F, YU J Y, et al. Nested sparse-grid stochastic collocation method for uncertainty quantification of blade stagger angle[J]. Energy2020201: 117583.
17 李玉, 楚武利, 姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报202357(4): 49-59.
  LI Y, CHU W L, JI T Y. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University202357(4): 49-59 (in Chinese).
18 JI T Y, CHU W L, LIANG C Y, et al. Uncertainty quantification on the influence of blade thickness deviation at different rotational speeds based on flow dissipation analysis[J]. Physics of Fluids202335(6): 066126.
19 WANG J Y, ZHENG X Q. Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power2020142(7): 070801.
20 PALAR P S, TSUCHIYA T, PARKS G T. Multi-fidelity non-intrusive polynomial chaos based on regression[J]. Computer Methods in Applied Mechanics and Engineering2016305: 579-606.
21 GUO Z T, CHU W L, ZHANG H G. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology2022129: 107802.
22 GUO Z T, CHU W L, ZHANG H G, et al. Aerodynamic evaluation of cascade flow with actual geometric uncertainties using an adaptive sparse arbitrary polynomial chaos expansion[J]. Physics of Fluids202335(3): 036122.
23 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报201738(3): 490-497.
  CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics201738(3): 490-497 (in Chinese).
24 夏志恒, 罗佳奇. 涡轮叶片来流角扰动不确定性量化分析[J]. 航空动力学报202035(3): 519-531.
  XIA Z H, LUO J Q. Uncertainty quantification of inlet incidence angle variation for turbine blade[J]. Journal of Aerospace Power202035(3): 519-531 (in Chinese).
25 REITZ G, SCHLANGE S, FRIEDRICHS J. Design of experiments and numerical simulation of deteriorated high pressure compressor airfoils[C]∥Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. NewYork: ASME, 2016.
26 SURIYANARAYANAN V, RENDU Q, VAHDATI M, et al. Effect of manufacturing tolerance in flow past a compressor blade[J]. Journal of Turbomachinery2022144(4): 041005.
27 WIENER N. The homogeneous chaos[J]. American Journal of Mathematics193860(4): 897.
28 ASKEY R, WILSON J. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials[J]. Memoirs of the American Mathematical Society198554(319): 1-55.
29 庄皓琬, 滕金芳, 马宇晨, 等. 非轴对称安装角对压气机转子叶片性能的影响[J]. 航空动力学报202136(9): 1999-2011.
  ZHUANG H W, TENG J F, MA Y C, et al. Impacts of non-axisymmetric stagger angle on performance of compressor rotor blade[J]. Journal of Aerospace Power202136(9): 1999-2011 (in Chinese).
30 JOSLYN H D, DRING R P. Axial compressor stator aerodynamics[J]. Journal of Engineering for Gas Turbines and Power1985107(2): 485-492.
文章导航

/