综述

变翼尖机翼技术研究现状与发展趋势

  • 李斌 ,
  • 张泽南 ,
  • 贾飞 ,
  • 孙健 ,
  • 刘彦菊 ,
  • 冷劲松
展开
  • 1.哈尔滨工业大学 复合材料与结构研究所,哈尔滨 150080
    2.哈尔滨工业大学 航天科学与力学系,哈尔滨 150001
.E-mail: yj_liu@hit.edu.cn

收稿日期: 2024-01-02

  修回日期: 2024-01-18

  录用日期: 2024-03-04

  网络出版日期: 2024-03-19

Research status and development trend of morphing wingtip technology

  • Bin LI ,
  • Zenan ZHANG ,
  • Fei JIA ,
  • Jian SUN ,
  • Yanju LIU ,
  • Jinsong LENG
Expand
  • 1.Center for Composite Materials and Structures,Harbin Institute of Technology,Harbin 150080,China
    2.Department of Astronautical Science and Mechanics,Harbin Institute of Technology,Harbin 150001,China
E-mail: yj_liu@hit.edu.cn

Received date: 2024-01-02

  Revised date: 2024-01-18

  Accepted date: 2024-03-04

  Online published: 2024-03-19

摘要

机翼翼尖对飞行器的气动性能和操控性能有重要影响,在起飞、爬升、巡航、下降等不同飞行阶段,飞行器对机翼翼尖几何参数有不同需求。变翼尖机翼技术是一种多功能、局部变体技术,可用于提升机翼气动性能、提高燃油效率、减轻阵风载荷、强化操控性能等用途。从气动特性、结构响应和操控特性3方面,对变翼尖机翼技术效益进行梳理,从翼尖变形形式、材料与结构组成2个角度,展开对变翼尖机翼技术研究现状的讨论,指出变翼尖机翼技术正在向多功能集成、组合变形和智能化方向发展。提出变翼尖机翼技术亟需解决的4项关键技术,即全局气动优化、变形/承载一体化蒙皮技术、高效驱动系统设计、智能控制技术,分析了各项关键技术的技术特点和研究难点。变翼尖机翼关键技术若得到突破,相关技术将可以移植应用到全局变体飞行器技术中。

本文引用格式

李斌 , 张泽南 , 贾飞 , 孙健 , 刘彦菊 , 冷劲松 . 变翼尖机翼技术研究现状与发展趋势[J]. 航空学报, 2024 , 45(19) : 30042 -030042 . DOI: 10.7527/S1000-6893.2024.30042

Abstract

The wingtip has an important influence on the aerodynamic and control performance of the aircraft. Different flight stages such as take-off, climb, cruise, and descent impose diverse requirements for the geometric parameters of the wingtip. The morphing wingtip technology is a multi-functional, local morphing technology used to improve wing aerodynamic performance and fuel efficiency, reduce gust loads, and enhance control performance. This paper classifies the technical benefits of morphing wingtips from the three aspects of aerodynamic characteristics, structural response, and control characteristics, and discusses the current research status of the morphing wingtip technology from the two perspectives of wingtip deformation form, and material and structure composition. In addition, this article points out that the morphing wingtip technology is developing towards multifunctional integration, combined deformation, and intelligence. Four key technologies that need to be urgently solved for the morphing wingtip technology are presented, including the high-output actuator system, deformation/loading integrative skins, global aerodynamic optimization, and intelligent control technology, and the technical characteristics and research difficulties of each key technology are analyzed. If there is a breakthrough in the key technology of morphing wingtip, the related technology can be transplanted and applied to the global morphing aircraft.

参考文献

1 ROTH B, PETERS C, CROSSLEY W. Aircraft sizing with morphing as an independent variable: Motivation, strategies and investigations[C]∥ AIAA’s Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical Forum. Reston: AIAA, 2002.
2 JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]∥ SPIE Proceedings, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. 2004.
3 SMITH K, BUTT J, VON SPAKOVSKY M, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]∥ 39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
4 FROMMER J, CROSSLEY W. Enabling continuous optimization for sizing morphing aircraft concepts[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
5 PLINE A. Designing the 21st century aerospace vehicle[EB/OL].(2007-11-30) [2021-12-05]. .
6 URSACHE N, MELIN T, ISIKVEREN A, et al. Morphing winglets for aircraft multi-phase improvement[C]∥ 7th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). Reston: AIAA, 2007.
7 SMITH D D, AJAJ R M, ISIKVEREN A T, et al. Multi-objective optimization for the multiphase design of active polymorphing wings[J]. Journal of Aircraft201249(4): 1153-1160.
8 张庆峰, 熊克, 李伟, 等. 变体翼梢小翼的减阻机理数值模拟[J]. 航空动力学报201429(5): 1105-1111.
  ZHANG Q F, XIONG K, LI W, et al. Numerical simulation on morphing winglets for its drag reduction mechanisms[J]. Journal of Aerospace Power201429(5): 1105-1111 (in Chinese).
9 仇翯辰, 邱志平, 陈贤佳, 等. 商用飞机翼尖装置减阻机理及其发展与应用[J]. 航空制造技术201558(15): 120-125, 128.
  QIU H C, QIU Z P, CHEN X J, et al. Introduction to winglet drag reduction mechanism of commercial aircraft and its development & application[J]. Aeronautical Manufacturing Technology201558(15): 120-125, 128 (in Chinese).
10 GUERRERO J, SANGUINETI M, WITTKOWSKI K. CFD study of the impact of variable cant angle winglets on total drag reduction[J]. Aerospace20185(4): 126.
11 COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a morphing wingtip[J]. Journal of Aircraft201552(5): 1394-1403.
12 SEGUI M, ABEL F R, BOTEZ R M, et al. New aerodynamic studies of an adaptive winglet application on the regional jet CRJ700[J]. Biomimetics20216(4): 54.
13 EGUEA J P, PEREIRA GOUVEIA DA SILVA G, MARTINI CATALANO F. Fuel efficiency improvement on a business jet using a camber morphing winglet concept[J]. Aerospace Science and Technology202096: 105542.
14 KAZIM A H, MALIK A H, ALI H, et al. CFD analysis of variable geometric angle winglets[J]. Aircraft Engineering and Aerospace Technology202294(2): 289-301.
15 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报201435(1): 29-45.
  LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica201435(1): 29-45 (in Chinese).
16 尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术201760(17): 24-29.
  YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology201760(17): 24-29 (in Chinese).
17 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报200728(4): 773-778.
  DU S Y, ZHANG B M. Status and developments of intelligentized aircraft structures[J]. Journal of Astronautics200728(4): 773-778 (in Chinese).
18 HARTL D J, LAGOUDAS D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2007221(4): 535-552.
19 裘进浩, 边义祥, 季宏丽, 等. 智能材料结构在航空领域中的应用[J]. 航空制造技术200952(3): 26-29.
  QIU J H, BIAN Y X, JI H L, et al. Application of smart materials and structures in aviation industry[J]. Aeronautical Manufacturing Technology200952(3): 26-29 (in Chinese).
20 BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures201122(9): 823-877.
21 GOMEZ J C, GARCIA E. Morphing unmanned aerial vehicles[J]. Smart Materials and Structures201120(10): 103001.
22 GATTO A, MATTIONI F, FRISWELL M I. Experimental investigation of bistable winglets to enhance aircraft wing lift takeoff capability[J]. Journal of Aircraft200946(2): 647-655.
23 GATTO A, BOURDIN P, FRISWELL M I. Experimental investigation into articulated winglet effects on flying wing surface pressure aerodynamics[J]. Journal of Aircraft201047(5): 1811-1815.
24 CASTRICHINI A, HODIGERE SIDDARAMAIAH V, CALDERON D E, et al. Nonlinear folding wing tips for gust loads alleviation[J]. Journal of Aircraft201653(5): 1391-1399.
25 CASTRICHINI A, SIDDARAMAIAH V H, CALDERON D E, et al. Preliminary investigation of use of flexible folding wing tips for static and dynamic load alleviation[J]. The Aeronautical Journal2017121(1235): 73-94.
26 CHEUNG R C, CASTRICHINI A, REZGUI D, et al. Testing of wing-tip spring device for gust loads alleviation[C]∥ Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017.
27 AJAJ R M. Flight dynamics of transport aircraft equipped with flared-hinge folding wingtips[J]. Journal of Aircraft202058(1): 98-110.
28 BOURDIN P, GATTO A, FRISWELL M I. Aircraft control via variable cant-angle winglets[J]. Journal of Aircraft200845(2): 414-423.
29 AJAJ R M, BEAVERSTOCK C S, FRISWELL M I. Morphing aircraft: The need for a new design philosophy[J]. Aerospace Science and Technology201649: 154-166.
30 AJAJ R M, JANKEE G K. The transformer aircraft: A multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing[J]. Aerospace Science and Technology201876: 512-522.
31 O’DONNELL R, MOHSENI K. Roll control of low-aspect-ratio wings using articulated winglet control surfaces[J]. Journal of Aircraft201956(2): 419-430.
32 VOS R, BARRETT R, DE BREUKER R, et al. Post-buckled precompressed elements: A new class of control actuators for morphing wing UAVs[J]. Smart Material Structures200716(3): 919-926.
33 SMITH D D, LOWENBERG M, JONES D, et al. Computational and experimental validation of the active morphing wing[J]. Journal of aircraft201451(3): 925-937.
34 FALC?O L, GOMES A A, SULEMAN A. Aero-structural design optimization of a morphing wingtip[J]. Journal of Intelligent Material Systems and Structures201122(10): 1113-1124.
35 EGUEA J P, BRAVO-MOSQUERA P D, CATALANO F M. Camber morphing winglet influence on aircraft drag breakdown and tip vortex structure[J]. Aerospace Science and Technology2021119: 107148.
36 AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences2021120: 100682.
37 PANAGIOTOU P, ANTONIOU S, YAKINTHOS K. Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical blended-wing-body UAV[J]. Aerospace Science and Technology2022123: 107467.
38 DANIELE E, DE FENZA A, DELLA VECCHIA P. Conceptual adaptive wing-tip design for pollution reductions[J]. Journal of Intelligent Material Systems and Structures201223(11): 1197-1212.
39 DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus20177(1): 20160092.
40 JOHN T. Boeing’s 777X jetliner comes together[EB/ OL]. (2018-11-22)[2021-12-05]. .
41 GIBBS Y. NASA to test in-flight folding spanwise adaptive wing to enhance aircraft efficiency[EB/OL]. (2018-06-10)[2021-12-05]. .
42 WANG C, HADDAD KHODAPARAST H, FRISWELL M I, et al. Development of a morphing wingtip based on compliant structures[J]. Journal of Intelligent Material Systems and Structures201829(16): 3293-3304.
43 SUN J, GAO H L, SCARPA F, et al. Active inflatable auxetic honeycomb structural concept for morphing wingtips[J]. Smart Material Structures201423(12): 125023.
44 MANZO J, GARCIA E, WICKENHEISER A M, et al. Adaptive structural systems and compliant skin technology of morphing aircraft structures[C]∥Proceedings of SPIE 5390, Smart Structures and Materials 2004: Smart Structures and Integrated Systems. 20045390: 225-234.
45 HAN M W, RODRIGUE H, KIM H I, et al. Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles[J]. Composite Structures2016140: 202-212.
46 GUHA T K, KUMAR R. Active control of wingtip vortices using piezoelectric actuated winglets[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
47 VASISTA S, DE GASPARI A, RICCI S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology201688(2): 311-330.
48 MOOSAVIAN A, XI F F, HASHEMI S M. Design and motion control of fully variable morphing wings[J]. Journal of Aircraft201350(4): 1189-1201.
49 陈钱, 尹维龙, 白鹏, 等. 变后掠变展长翼身组合体系统设计与特性分析[J]. 航空学报201031(3): 506-513.
  CHEN Q, YIN W L, BAI P, et al. System design and characteristics analysis of a variable-sweep and variable-span wing-body[J]. Acta Aeronautica et Astronautica Sinica201031(3): 506-513 (in Chinese).
50 SHELTON A, TOMAR A, PRASAD J, et al. Active multiple winglets for improved unmanned-aerial-vehicle performance[J]. Journal of Aircraft200643(1): 110-116.
51 ROWE J, SMITH S, SIMPSON A, et al. Development of a finite element model of warping inflatable wings[C]?∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
52 CHANG E, MATLOFF L Y, STOWERS A K, et al. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion[J]. Science Robotics20205(38): eaay1246.
53 AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics20205(47): eabc2897.
54 DUSSART G X, LONE M M, O’ROURKE C, et al. In-flight folding wingtip system: Inspiration from the XB-70 Valkyrie[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
55 JENKINS D R, LANDIST. North American Valkyrie XB-70-WarbirdTech Vol 34 [M]. Thurgoona:Specialty Press, 2002: 49-76.
56 DUSSART G X, YUSUF S Y, LONE M M. Effect of wingtip morphing on the roll mode of a flexible aircraft[C]∥ Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018.
57 CONCILIO A, CONCILIO A LO, MILAZZO A, et al. Optimization design process of a morphing winglet[C]∥Proceedings of SPIE 10593, Bioinspiration, Biomimetics, and Bioreplication VIII. 20181059305: 1-10.
58 AMEDURI S, DIMINO I, CONCILIO A, et al. Specific modeling issues on an adaptive winglet skeleton[J]. Applied Sciences, 25.
59 DIMINO I, ANDREUTTI G, MOENS F, et al. Integrated design of a morphing winglet for active load control and alleviation of turboprop regional aircraft[J]. Applied Sciences202111(5): 2439.
60 VASISTA S, RIEMENSCHNEIDER J, VAN DE KAMP B, et al. Evaluation of a compliant droop-nose morphing wing tip via experimental tests[J]. Journal of Aircraft201654(2): 519-534.
61 COIRO D P, NICOLOSI F, SCHERILLO F, et al. Improving Hang-glider maneuverability using multiple winglets: A numerical and experimental investigation[J]. Journal of Aircraft200845(3): 981-989.
62 PECORA R, AMOROSO F, DIMINO I, et al. Aeroelastic stability analysis of a large civil aircraft equipped with morphing winglets and adaptive flap tabs[C]∥ Proceedings of SPIE 10595, Active and Passive Smart Structures and Integrated Systems XII. 2018105930L: 1-13.
63 PECORA R, MAGNIFICO M, AMOROSO F, et al. Multi-parametric flutter analysis of a morphing wing trailing edge[J]. The Aeronautical Journal2014118(1207): 1063-1078.
64 RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics20172(3): eaal2505.
65 杜善义, 冷劲松, 王殿富. 智能材料系统与结构[M]. 北京:科学出版社, 2001:1-5.
  DU S Y, LENG J S, WANG D F. Intelligent material system and structure [M]. Beijing: Science Press, 2001:1-5 (in Chinese).
66 SUN J, GUAN Q H, LIU Y J, et al. Morphing aircraft based on smart materials and structures: A state-of-the-art review[J]. Journal of Intelligent Material Systems and Structures201627(17): 2289-2312.
67 FLORANCE J, FLEMING G, BURNER A, et al. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/northrop grumman smart wing program[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
68 LOVE M, ZINK P, STROUD R, et al. Demonstration of morphing technology through ground and wind tunnel tests[C]?∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
69 W?LCKEN P C, PAPADOPOULOS M. Smart intelligent aircraft structures (SARISTU)[C]∥ Proceedings of the Final Project Conference. 2015: 257-274.
70 HERRERA C, SPIVEY N, LUNG S F, et al. Aeroelastic response of the ACTE transition section[C]∥ 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016.
71 OLSON E. Morphing wing created using smart materials and actuators[EB/OL]. [2010-09-01]. .
72 CRAMER N B, CELLUCCI D W, FORMOSO O B, et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials & Structures201928(5): 055006.
73 BARBARINO S, SAAVEDRA FLORES E I, AJAJ R M, et al. A review on shape memory alloys with applications to morphing aircraft[J]. Smart Materials and Structures201423(6): 063001.
74 李伟, 熊克, 陈宏, 等. 含有SMA弹簧驱动器的可变倾斜角翼梢小翼研究[J]. 航空学报201233(1): 22-33.
  LI W, XIONG K, CHEN H, et al. Research on variable cant angle winglets with shape memory alloy spring actuators[J]. Acta Aeronautica et Astronautica Sinica201233(1): 22-33 (in Chinese).
75 MAO Z W, XU Z W, WANG Q. Shape memory alloy actuator with active cooling device and deflectable winglet application[J]. Smart Material Structures202029(10): 105026.
76 GIBBS Y. NASA tests new alloy to fold wings in flight[EB/OL]. (2018-06-10)[2021.12.05]. .
77 AREA-I. Prototype-technology evaluation research aircraft[EB/OL]. (2018-12-20)[2018.12.20]. .
78 HEIDMAN K. Metal with memory: F-18 wing fold[EB/OL]. (2018-08-21)[2018.12.20]. .
79 RODRIGUE H, CHO S, HAN M W, et al. Effect of twist morphing wing segment on aerodynamic performance of UAV[J]. Journal of Mechanical Science and Technology201630(1): 229-236.
80 RODRIGUE H, BHANDARI B, HAN M W, et al. A shape memory alloy-based soft morphing actuator capable of pure twisting motion[J]. Journal of Intelligent Material Systems and Structures201526(9): 1071-1078.
81 谷小军, 周炳楠, 王文龙, 等. 形状记忆合金驱动的可变翼梢小翼设计与验证[J]. 机械工程学报202258(17): 49-57.
  GU X J, ZHOU B N, WANG W L, et al. Design and assessment of variable winglet driven by shape memory alloy[J]. Journal of Mechanical Engineering202258(17): 49-57 (in Chinese).
82 LENG J S, LAN X, LIU Y J, et al. Shape-memory polymers and their composites: Stimulus methods and applications[J]. Progress in Materials Science201156(7): 1077-1135.
83 PATADIYA J, GAWANDE A, JOSHI G, et al. Additive manufacturing of shape memory polymer composites for futuristic technology[J]. Industrial & Engineering Chemistry Research202160(44): 15885-15912.
84 KUDER I K, ARRIETA A F, RAITHER W E, et al. Variable stiffness material and structural concepts for morphing applications[J]. Progress in Aerospace Sciences201363: 33-55.
85 SUN J, XU Y Y, CHEN Y J, et al. Spandex fiber reinforced shape memory polymer composites and their mechanical properties[J]. Advanced Materials Research2011410: 370-374.
86 LENG J S. Active moving polymers and multifunctional composites: Shape the future structures[J]. Advanced Materials Research2013745: 129-134.
87 SUN J, LIU Y J, LENG J S. Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins[J]. Journal of Intelligent Material Systems and Structures201526(15): 2020-2027.
88 BYE D, MCCLURE P. Design of a morphing vehicle[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
89 LENG J S, YU K, SUN J, et al. Deployable morphing structure based on shape memory polymer[J]. Aircraft Engineering and Aerospace Technology201587(3): 218-223.
90 YU K, YIN W L, SUN S H, et al. Design and analysis of morphing wing based on SMP composite[C]∥ SPIE Proceedings, Industrial and Commercial Applications of Smart Structures Technologies. 2009.
91 BILGEN O, KOCHERSBERGER K, DIGGS E C, et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]∥ 48th AIAA/ASME/ASCE/AH S/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
92 CHEN X, LIU J, LI Q. The smart morphing winglet driven by the piezoelectric macro fiber composite actuator[J]. The Aeronautical Journal2022126(1299): 830-847.
93 URSACHE N M, MARES C. Optimization of a corrugated skin for a morphable winglet[C]∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
94 DAYYANI I, SHAW A D, SAAVEDRA FLORES E I, et al. The mechanics of composite corrugated structures: A review with applications in morphing aircraft[J]. Composite Structures2015133: 358-380.
95 WANG C, KHODAPARAST H H, FRISWELL M I. Conceptual study of a morphing winglet based on unsymmetrical stiffness[J]. Aerospace Science and Technology201658: 546-558.
96 ERMAKOVA A, DAYYANI I. Shape optimisation of composite corrugated morphing skins[J]. Composites Part B: Engineering2017115: 87-101.
97 URSACHE N M, MELIN T, ISIKVEREN A T, et al. Technology integration for active poly-morphing winglets development[C]∥ Proceedings of ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2009: 775-782.
98 WANG C, KHODAPARAST H H, FRISWELL M I, et al. Compliant structures based on stiffness asymmetry[J]. The Aeronautical Journal2018122(1249): 442-461.
99 VOCKE, R, CURT K, NORMAN W. Development of a span-extending blade tip system for a reconfigurable helicopter rotor[C]∥ 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. Reston: AIAA, 2012.
100 VOCKE R D III, KOTHERA C S, WOODS B K S, et al. Development and testing of a span-extending morphing wing[J]. Journal of Intelligent Material Systems and Structures201122(9): 879-890.
101 LIU W D, ZHU H, ZHOU S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics201326(4): 935-942.
102 DAYNES S, WEAVER P M. Design and testing of a deformable wind turbine blade control surface[J]. Smart Materials and Structures201221(10): 105019.
103 HASSAN M R, SCARPA F, RUZZENE M, et al. Smart shape memory alloy chiral honeycomb[J]. Materials Science and Engineering: A2008481-482: 654-657.
104 NEVILLE R M, CHEN J G, GUO X G, et al. A Kirigami shape memory polymer honeycomb concept for deployment[J]. Smart Materials and Structures201726(5): 05LT03.
105 BUBERT E, WOODS B, KOTHERA C, et al. Design and fabrication of a passive 1-D morphing aircraft skin[J]. Journal of Intelligent Material Systems & Structures201021(17): 1699-1717.
106 HAJARIAN A, ZARGAR O, ZAKERZADEH M R, et al. Fabrication, characterization, and modeling of a structural flexible skin for applications in morphing wings[J]. Mechanics of Materials2022172: 104409.
107 孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 96-99.
  SUN J. Research on deformable wing structure based on SMPC skin and active honeycomb structure[D]. Harbin: Harbin Institute of Technology, 2015: 96-99 (in Chinese).
108 SUN J, DU L Z, SCARPA F, et al. Morphing wingtip structure based on active inflatable honeycomb and shape memory polymer composite skin: A conceptual work[J]. Aerospace Science and Technology2021111: 106541.
109 张欣, 季宏丽, 周丹杰, 等. 高超声速飞行器变体机翼方案及气动特性分析[J]. 航空工程进展202314(4): 47-57.
  ZHANG X, JI H L, ZHOU D J, et al. Variant wing scheme and aerodynamic characteristics analysis of hypersonic aircraft[J]. Advances in Aeronautical Science and Engineering202314(4): 47-57 (in Chinese).
110 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报201937(3): 426-443.
  BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica201937(3): 426-443 (in Chinese).
111 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报202243(10): 527449.
  RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527449 (in Chinese).
112 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹2021(6): 14-23.
  ZHANG Y, ZHANG W, BIE D W, et al. Research summary and development trend analysis of intelligent variant aircraft[J]. Aerodynamic Missile Journal2021(6): 14-23 (in Chinese).
113 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
114 THILL C, ETCHES J, BOND I, et al. Morphing skins[J]. The Aeronautical Journal2008112(1129): 117-139.
文章导航

/