综述

基于逻辑-物理框架的智慧机场评价指标量化方法

  • 张锐 ,
  • 黄卫 ,
  • 马涛
展开
  • 1.东南大学 智能运输系统研究中心,南京 211189
    2.综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室),南京 211100
    3.东南大学 交通学院,南京 211189
.E-mail: hhhwei2005@126.com

收稿日期: 2024-01-19

  修回日期: 2024-02-01

  录用日期: 2024-03-08

  网络出版日期: 2024-03-11

基金资助

国家重点研发计划(2020YFB1600102);国家自然科学基金(42074039);综合交通运输理论交通运输行业重点实验室(南京现代综合交通实验室)开放课题(MTF2023013)

Quantitative method of smart airport evaluation index based on logic-physical framework

  • Rui ZHANG ,
  • Wei HUANG ,
  • Tao MA
Expand
  • 1.School of Instrument Science and Engineering,Southeast University,Nanjing  211189,China
    2.Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory),Nanjing  211100,China
    3.School of Transportation,Southeast University,Nanjing  211189,China
E-mail: hhhwei2005@126.com

Received date: 2024-01-19

  Revised date: 2024-02-01

  Accepted date: 2024-03-08

  Online published: 2024-03-11

Supported by

National Key Research and Development Project(2020YFB1600102);National Natural Science Foundation of China(42074039);Opening Foundation of Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Tranportation Laboratory)(MTF2023013)

摘要

为了解决机场在进行智能化程度评价过程中基础业务流指标无法定量表达的问题,通过对比分析现有评价体系方法,采用面向过程的方法对智慧机场体系框架进行构建,搭建了基于逻辑-物理框架的智慧机场评价体系;在此基础上,对框架内的各个基础指标按定性指标和定量指标2个不同的类别进行了数学上的定义与定量描述。研究结果表明:面向过程的评价体系同样也适用于机场的智能化评价体系构建,且能够从逻辑框架到物理框架对智慧机场的各个业务流和子系统进行全面的反映。对基础指标根据其数学描述采用不同的分类量化有助于对机场的智慧化程度刻画更加精确和全面。对A机场基础指标的量化发现飞行区管理基础指标中百分比型指标占20%,数值型指标占34.3%,是否型指标占45.7%,陆侧交通管理基础指标中百分比型指标占13.3%,数值型指标占13.3%,是否型指标占73.4%,且各个指标能够展现具体的量化分值,说明提出的量化方法能够适用于机场全部业务流的量化处理。

本文引用格式

张锐 , 黄卫 , 马涛 . 基于逻辑-物理框架的智慧机场评价指标量化方法[J]. 航空学报, 2024 , 45(10) : 30199 -030199 . DOI: 10.7527/S1000-6893.2024.30199

Abstract

To address the issue of the inability to quantitatively express the basic service flow index in evaluating the level of airport intelligence, this study proposes a logic-physical framework-based smart airport evaluation system. Through a comparison and analysis of existing evaluation methods, the process-oriented approach is adopted to construct a framework for smart airport systems. On this basis, each basic indicator within the framework is defined mathematically and described quantitatively according to two different categories of qualitative index and quantitative index. The results of the study show that the process-oriented evaluation system is also applicable to the construction of intelligent evaluation system for airports, and it can reflect the business flows and subsystems of intelligent airports comprehensively from the logical framework to the physical framework. The use of different categorical quantification methods for the underlying metrics based on their mathematical descriptions helps to portray a more accurate and comprehensive picture of the degree of intelligence in airports. The quantitative analysis of the basic indicators of A airport found that the basic indicators of flight area management account for 20% of percentage type indicator, 34.3% of numerical type indicator, 45.7% of yes or no type indicator, 13.3% of percentage type indicator, 13.3% of numerical type indicator and 73.4% of yes or no type indicator of the basic indicators of land side traffic management Each indicator can show the specific quantization score, indicating that the quantitative method proposed can be applied to the quantization processing of all airport traffic.

参考文献

1 张旭. 民航发展现状及未来发展策略[J]. 中国航务周刊2023(51): 61-63.
  ZHANG X. Present situation and future development strategy of civil aviation[J]. China Shipping Gazette2023(51): 61-63 (in Chinese).
2 阎燕. 民航业发展现状及未来民航经济发展趋势[J]. 中国集体经济2021(20): 55-56.
  YAN Y. Present situation of civil aviation industry and future development trend of civil aviation economy[J]. China Collective Economy2021(20): 55-56 (in Chinese).
3 王同琛, 王丽欣, 刘恒飞. 从北京大兴国际机场谈GIS的发展前景[J]. 测绘与空间地理信息201942(12): 149-151.
  WANG T C, WANG L X, LIU H F. Talking about the development prospect of GIS from Beijing Daxing international airport[J]. Geomatics & Spatial Information Technology201942(12): 149-151 (in Chinese).
4 刘成肖. 四型机场评价方法之探讨[J]. 中国设备工程2023(4): 249-251.
  LIU C X. Discussion on evaluation method of four types of airports[J]. China Plant Engineering2023(4): 249-251 (in Chinese).
5 吴程程, 李彤阳, 张建. 中小机场推进四型机场建设探讨[J]. 民航管理2022(10): 24-27.
  WU C C, LI T Y, ZHANG J. Discussion on how to promote four characteristic airport construction at smal and medium-sized airports[J]. Civil Aviation Management2022(10): 24-27 (in Chinese).
6 KHADONOVA S V, UFIMTSEV A V, DYMKOVA S S. “Digital smart airport” system based on innovative navigation and information technologies[C]∥2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). Piscataway: IEEE Press, 2020: 1-6.
7 杨光. 基于数字化转型的A集团智慧机场建设研究[D]. 济南: 山东大学, 2023.
  YANG G. Research on the smart airport construction of group A based on digital transformation[D].Jinan: Shandong University, 2023 (in Chinese).
8 BEZERRA G C L, GOMES C F. Performance measurement in airport settings: A systematic literature review[J]. Benchmarking201623(4): 1027-1050.
9 LUPO T. Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily[J]. Journal of Air Transport Management201542: 249-259.
10 NAGY E, CSISZáR C. Revealing influencing factors of check-in time in air transportation[J]. Acta Polytechnica Hungarica201714(4): 225-243.
11 G??MEN E. Smart airport: Evaluation of performance standards and technologies for a smart logistics zone[J]. Transportation Research Record: Journal of the Transportation Research Board20212675(7): 480-490.
12 王红岩, 许雅玺. 基于层次分析法的机场服务质量评价[J]. 科技和产业201515(6): 64-67.
  WANG H Y, XU Y X. Airport service quality evaluation based on AHP model[J]. Science Technology and Industry201515(6): 64-67 (in Chinese).
13 牛军锋, 孙静娟, 李生厚, 等. 基于“综合赋权” 模糊物元模型的机场运行安全评价[J]. 火力与指挥控制201742(4): 101-104, 109.
  NIU J F, SUN J J, LI S H, et al. Airport operation safety assessment based on fuzzy matter element model with comprehensive weighting[J]. Fire Control & Command Control201742(4): 101-104, 109 (in Chinese).
14 涂积奇, 陆亚芳, 杨敏, 等. 面向过程的航天产品供应商质量保证能力评价方法研究与实践[J]. 中国质量与标准导报2022(2): 64-68.
  TU J Q, LU Y F, YANG M, et al. Research and practice of process quality assurance ability evaluation method for aerospace product supplier[J]. China Quality and Standards Review2022(2): 64-68 (in Chinese).
15 谭凯中, 秦勃, 何亚文. 面向过程的海洋时空数据分布式存储与并行检索[J]. 中国海洋大学学报(自然科学版)202151(11): 94-101, 134.
  TAN K Z, QIN B, HE Y W. Process-oriented distributed storage and retrieval of ocean spatiotemporal data[J]. Periodical of Ocean University of China202151(11): 94-101, 134 (in Chinese).
16 窦雅娟. 基于面向对象与深度学习方法的遥感影像自动提取技术研究[J]. 数字通信世界2023(7): 34-36.
  DOU Y J. Research on remote sensing image automatic extraction technology based on object oriented and deep learning methods[J]. Digital Communication World2023(7): 34-36 (in Chinese).
17 魏小东. 中国铁水联运信息系统物理框架设计[J]. 科技视界2016(21): 244.
  WEI X D. Physical framework design of China hot metal intermodal transport information system[J]. Science & Technology Vision2016(21): 244 (in Chinese).
18 SAATY T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences20081(1): 83.
19 HWANG C L, YOON K. Methods for multiple attribute decision making[M]∥Multiple Attribute Decision Making. Berlin: Springer, 1981: 58-191.
20 邢刚. 大型机场构建智慧数字电网的顶层设计研究[J]. 民航学报20226(S1): 147-150.
  XING G. Research on the top-level design of smart digital power grid in large airports[J]. Journal of Civil Aviation20226(S1): 147-150 (in Chinese).
21 金雷, 王银银, 傅惠, 等. 基于模糊层次分析法的机场陆侧智慧交通系统感知水平评价[J]. 科学技术与工程202222(8): 3365-3372.
  JIN L, WANG Y Y, FU H, et al. Perception level evaluation of airport land-side intelligent traffic system based on fuzzy analytic hierarchy process[J]. Science Technology and Engineering202222(8): 3365-3372 (in Chinese).
文章导航

/