流体力学与飞行力学

用于吸气式电推进系统的射频等离子体推力器实验测试

  • 郑鹏 ,
  • 吴建军 ,
  • 张宇 ,
  • 钟宇轩
展开
  • 国防科技大学 空天科学学院,长沙 410073
.E-mail: jjwu@nudt.edu.cn

收稿日期: 2024-01-11

  修回日期: 2024-02-08

  录用日期: 2024-02-23

  网络出版日期: 2024-02-27

基金资助

国家自然科学基金(T2221002);湖南省自然科学基金(2024JJ5405)

Experimental testing of inductively coupled radiofrequency plasma thruster for atmosphere-breathing electric propulsion system

  • Peng ZHENG ,
  • Jianjun WU ,
  • Yu ZHANG ,
  • Yuxuan ZHONG
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
E-mail: jjwu@nudt.edu.cn

Received date: 2024-01-11

  Revised date: 2024-02-08

  Accepted date: 2024-02-23

  Online published: 2024-02-27

Supported by

National Natural Science Foundation of China(T2221002);Hunan Provincial Natural Science Foundation(2024JJ5405)

摘要

吸气式电推进系统能够摄取稀薄大气作为电推力器的推进工质,有望在不从地面携带推进剂的条件下,满足超低轨道飞行器长期在轨运行期间的推进动力需求。基于感性耦合等离子体源,添加了物理喷管和附加增强磁场,设计了一种用于吸气式电推进系统的射频等离子体推力器。超低轨道大气的主要成分为氮气和原子氧,鉴于原子氧电离能低,且难以在地面条件下储存使用,使用氮气工质对推力器在不同工质流量、射频功率和磁场设置条件下的推力性能进行了测试。结果表明,使用附加增强磁场能够有效提高推力器的推力和比冲大小,并在一定轨道范围内实现稀薄大气阻力完全补偿,为超低轨道吸气式电推进系统的研制与应用提供了有效技术途径。

本文引用格式

郑鹏 , 吴建军 , 张宇 , 钟宇轩 . 用于吸气式电推进系统的射频等离子体推力器实验测试[J]. 航空学报, 2024 , 45(21) : 130144 -130144 . DOI: 10.7527/S1000-6893.2024.30144

Abstract

The Atmosphere-Breathing Electric Propulsion (ABEP) technology can capture the rarefied atmosphere as the propellant for electric thrusters, potentially meeting the thrust requirements of Ultra-Low Earth Orbit (ULEO) satellites during operation without carrying any propellant from the ground. This paper designs a RadioFrequency (RF) plasma thruster through adding a nozzle and an enhanced magnetic field based on the Inductively Coupled Plasma (ICP) source. The main atmospheric components in the ULEO are nitrogen and atomic oxygen. Given the low ionization energy of atomic oxygen and its difficulty in storage and use under ground conditions, experiments were conducted on the thruster using nitrogen as the propellant with different gas flows, RF powers, and magnetic field settings.Results indicate that the use of the enhanced magnetic field can effectively improve the thrust and specific impulse of the thruster, and achieve full compensation for the sparse atmospheric drag within a certain orbital range, thus providing an effective approach for the development and application of ABEP systems.

参考文献

1 王艳奎. 临近空间飞行器应用前景及发展分析[J]. 国防科技200930(2): 20-24.
  WANG Y K. An analysis on application prospects and development of near-space vehicles[J]. National Defense Technology200930(2): 20-24 (in Chinese).
2 KANSAKAR P, HOSSAIN F. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth[J]. Space Policy201636: 46-54.
3 Union of Concerned Scientists. Union of concerned scientists satellite database [EB/OL].(2023-03-27) [2024-01-11]. .
4 CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences2020117: 100619.
5 LLOP J, ROBERTS P, HAO Z, et al. Very low Earth Orbit mission concepts for Earth observation: Benefits and challenges[C]∥Reinventing Space Conference, 2014.
6 SCH?NHERR T, KOMURASAKI K, ROMANO F, et al. Analysis of atmosphere-breathing electric propulsion[J]. IEEE Transactions on Plasma Science201543(1): 287-294.
7 NISHIYAMA K. Air breathing ion engine concept[C]?∥ 54th International Astronautical Congress, 2003.
8 DIAMANT K. Microwave cathode for air breathing electric propulsion[C]∥31st International Electric Propulsion Conference, 2009.
9 DIAMANT K. A 2-stage cylindrical Hall thruster for air breathing electric propulsion[C]∥46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
10 JOHNSON I K, WINGLEE R, ROBERSON B R. Pulsed plasma thrusters for atmospheric operation[C]∥ 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014.
11 G?KSEL B, MASHEK I CH. First breakthrough for future air-breathing magneto-plasma propulsion systems[J]. Journal of Physics: Conference Series2017825: 012005.
12 ROMANO F, CHAN Y A, HERDRICH G, et al. RF Helicon-based inductive plasma thruster (IPT) design for an atmosphere-breathing electric propulsion system (ABEP)[J]. Acta Astronautica2020176: 476-483.
13 ROMANO F, HERDRICH G, ROBERTS P C, et al. Inductive plasma thruster (IPT) for an atmosphere- breathing electric propulsion system: design and set in operation[C]∥36th International Electric Propulsion Conference, 2019.
14 ROMANO F, HERDRICH G, BINDER T, et al. Effects of applied magnetic field on IPG6-S, test-bed for an ABEP-based inductive plasma thruster (IPT) [C]?∥Proceedings of the 2018 Space Propulsion Conference, 2018.
15 洪延姬, 周伟静, 王广宇. 微推力测量方法及其关键问题分析[J]. 航空学报201334(10): 2287-2299.
  HONG Y J, ZHOU W J, WANG G Y. Methods of micro thrust measurement and analysis of its key issues[J]. Acta Aeronautica et Astronautica Sinica201334(10): 2287-2299 (in Chinese).
16 鲁高飞. PPT的高精度微冲量测量技术研究[D]. 长沙: 国防科学技术大学, 2014.
  LU G F. Research on high-precision micro-impulse measurement technology of PPT[D].Changsha: National University of Defense Technology, 2014 (in Chinese).
17 KEMP M A, KOVALESKI S D. Thrust measurements of the ferroelectric plasma thruster[J]. IEEE Transactions on Plasma Science200836(2): 356-362.
18 岑继文, 徐进良. 一种微推力测量的简化处理方法[J]. 航空学报200829(2): 297-303.
  CEN J W, XU J L. A simplification method for micro-thrust test[J]. Acta Aeronautica et Astronautica Sinica200829(2): 297-303 (in Chinese).
19 GRUBI?I? A N, GABRIEL S B. Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro- to millinewton thrust measurement[J]. Measurement Science and Technology201021(10): 105101.
20 WU J J, ZHENG P, ZHANG Y, et al. Recent development of intake devices for atmosphere-breathing electric propulsion system[J]. Progress in Aerospace Sciences2022133: 100848.
21 ZHENG P, WU J J, ZHANG Y, et al. A comprehensive review of atmosphere-breathing electric propulsion systems[J]. International Journal of Aerospace Engineering20202020(1): 8811847.
22 ZHENG P, WU J J, ZHANG Y, et al. Simulation investigation of inductively coupled plasma generator for atmosphere-breathing electric propulsion system[J]. Acta Astronautica2021187: 236-247.
23 ZHENG P, WU J J, ZHANG Y, et al. Optical diagnosis of an inductively coupled plasma source for atmosphere-breathing electric propulsion system[J]. Physics of Plasmas202330(2): 023503.
24 NRLMSISE. Mass spectrometer and incoherent scatter model [EB/OL]. [2024-01-11]. .
25 SHEN C. Rarefied gas dynamics: Fundamentals, simulations and micro flows[M]. Berlin: Springer, 2005.
26 CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research)[J]. Acta Astronautica2021180: 85-99.
文章导航

/