湿滑道面飞机牵引滑行系统纵向动力学建模与制动性能研究

  • 祝恒佳 ,
  • 齐凯 ,
  • 王立文 ,
  • 张威
展开
  • 1. 中国民航大学
    2. 中国民航大学航空地面特种设备研究基地

收稿日期: 2023-10-27

  修回日期: 2024-02-27

  网络出版日期: 2024-02-27

基金资助

飞机牵引滑出关键技术与测试平台研究;飞机牵引系统纵向动力学特性及控制策略研究;高速无杆飞机牵引多体-多场耦合系统动力学研究

Research on longitudinal dynamics modeling and braking performance of the towbarless aircraft taxiing system on wet road

  • ZHU Heng-Jia ,
  • QI Kai ,
  • WANG Li-Wen ,
  • ZHANG Wei
Expand

Received date: 2023-10-27

  Revised date: 2024-02-27

  Online published: 2024-02-27

摘要

飞机地面作业可分为低速(小于6节,约11.11km/h)、中速(6-14节)、高速(大于14节,约25.93km/h)三类,相比于传统的低速飞机牵引作业,新一代无杆飞机牵引滑行模式下牵引速度可达到40km/h,道面湿滑对高速飞机牵引滑行系统制动性能的影响不可忽视。采用伪流动动压轴承作用等效反映轮胎-水膜-道面相互作用,结合任意压力分布函数提出Lugre轮胎滑水动力学模型。针对AM210无杆飞机牵引车轮胎开展湿路面附着性能试验,对Lugre轮胎滑水动力学模型进行参数辨识。基于Matlab/Simulink和Adams/View建立Lugre轮胎滑水动力学模型和无杆牵引滑行系统的动力学联合仿真模型。采用模糊PID最优滑移率控制方法并考虑道面振动激励,对比研究湿滑与干燥道面下飞机牵引系统的制动性能。结果表明,湿滑道面轮胎动载荷小于干燥道面,轮胎抓地性能随水膜厚度增大而降低,在40km/h的初始制动速度下A级、C级1mm水膜随机道面的制动距离比干燥道面结果分别增加了30.9%、31.3%,对应工况下1mm水膜道面的制动距离比0.5mm水膜道面结果分别增加了2.7%、2.5%。本文的研究结果可为湿滑道面工况下飞机牵引滑行作业中的制动安全预测提供理论基础。

本文引用格式

祝恒佳 , 齐凯 , 王立文 , 张威 . 湿滑道面飞机牵引滑行系统纵向动力学建模与制动性能研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.29779

Abstract

Aircraft apron ground operation could be divided into the low-speed (less than 6 knots, about 11.11 km/h), middle-speed (6-14 knots), and high-speed (large than 14 knots, about 25.93 km/h) three cases. Comparing to the traditional low-speed aircraft towing operation, the traction velocity in the new-generation towbarless aircraft taxiing mode could reach to 40 km/h, in this case the wet road has a significant influence on the braking performance of a towbarless aircraft towing taxiing system (TLATS). The "pseudo" flow dynamic pressure bearing effect is used to be equivalent to the interaction among the tire, water film and road, and an advanced Lugre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The wet road tire adhesion experiments are conducted for a specific tire of the AM210 towbarless towing vehicle (TLTV), and the Lugre tire hydrodynamic model parameters are identified based on the experimental results. A co-simulation dynamic model of the Lugre tire hydrodynamic model in Matlab/Simulink and the TLATS in Adams/View is established. By employing the same fuzzy PID optimal slip rate control method and considering the rough road vibration excitation, the braking performances of the TLATS under wet road conditions are compared with those under dry road condition. It shows that the vertical tire dynamic load under wet road condition is smaller than that under dry road condition, and the tire grip performance decreases when the water film thickness increases. The braking distances for the A class and C class roads with 1mm water film increased 30.9% and 31.3%, respectively, than that under the dry rough roads with an initial braking speed of 40 km/h. The braking distance of 1mm water film surface increased by 2.7% and 2.5% respectively compared with that of 0.5mm water film surface under corresponding working conditions. The results could provide an theoretical basis for predicting a safe braking distance on wet road in the aircraft towing operation accurately.

参考文献

[1]TRANSPORTASI K N K.Aircraft accident investigation report[R]. Indonesia: Jakarta, 2015.
[2]WANG H, LV X, ZHANG W, et al.Study on vibration characteristics of the towbarless aircraft taxiing system[J].SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 6(2):175-188
[3]ZHU H J, ZHANG B Z, LV X, et al.Optimal chassis suspension design for towbarless towing vehicle for aircraft taxiing[J].SAE International Journal of Advances and Current Practices in Mobility, 2022, 4(4):1445-1453
[4]李跃明, 李晓云, 柴怡君, 等.飞机新牵引滑出方式下前起落架动响应分析[J].航空学报, 2022, 43(6):214-227
[5]LI Y M, LI X Y, CHAI Y J, et al.Dynamic response analysis of the nose landing gear in the aircraft new towing and taxiing mode[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(06):214-227
[6]戚基艳, 金嘉琦, 付景顺.舰载机无杆式牵引车横摆稳定性控制[J].上海交通大学学报, 2020, 54(9):943-952
[7]QI J Y, JIN J Q, FU J S.Yaw stability control of carrier-based aircraft towbarless tractor carrier[J].Journal of Shanghai Jiaotong University, 2020, 54(9):943-952
[8]HAYHOE G F.Braking performance of towbarless towing vehicles during maintenance tows[C]//First Congress of Transportation and Development. United States: ASCE, 2011:310-319.
[9]WANG N J, ZHOU L J, QIANG S, et al.Simulation research on braking safety properties of aircraft traction system[J]. Key Engineering Materials Vols, 2010, 419-420: 705-708.[J].Key Engineering Materials Vols, 2010, 419(1):705-708
[10]YOSHITAKA, TEZUKA.Application of the magic formula tire model to motorcycle maneuverability analysis[J].Jsae Review, 2001, 22(3):305-310
[11]谢斌, 李静静, 鲁倩倩, 等.联合收割机制动系统虚拟样机仿真及试验[J].农业工程学报, 2014, 30(4):18-24
[12]XIE B, LI J J, LU Q Q, et al.Simulation and experiment of virtual prototype braking system of combine harvester[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4):18-24
[13]SZABO B.Vehicle test based validation of a tire brush model using an optical velocity sensor[J].Periodica Polytechnica Transportation Engineering, 2013, 40(1):33-38
[14]RAJAPAKSHE M P, GUNARATNE M, KAW A K.Evaluation of Lugre tire friction model with measured data on multiple pavement surfaces[J].Tire Science & Technology, 2010, 38(3):213-227
[15]XU N, ZHOU J, LI X, et al.Analysis of the effect of inflation pressure on vehicle handling and stability under combined slip conditions based on the unitire model[J].SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5(3):259-277
[16]CANUDAS D W, OLSSON H, ASTROM K J, et al.A new model for control of systems with friction[J].IEEE Transactions on Automatic Control, 1995, 40(3):419-425
[17]ARAT M A, SINGH K B, TAHERI S.An intelligent tyre based adaptive vehicle stability controller[J].International Journal of Vehicle Design, 2014, 65(23):118-129
[18]MARQUES F, WOLI?SKI U, WOJTYRA M, et al.An investigation of a novel Lugre-based friction force model. Mechanism and Machine Theory, 2021, 166: 1-16.[J].Mechanism and Machine Theory, 2021, 166(1):1-16
[19]左曙光, 苏虎, 王纪瑞.滚动汽车轮胎自激振动仿真及其影响因素分析[J].振动与冲击, 2012, 31(4):18-24
[20]ZUO S G, SHU H, WANG J R.Simulation of self-excited vibration of a rolling tire and its influencing factors analysis[J].Journal of Vibration and Shock, 2012, 31(4):18-24
[21]LIANG W, MEDANIC J, RUHL R.Analytical dynamic tire model[J].Vehicle System Dynamics, 2008, 46(3):197-227
[22]朱先民, 宋健, 程帅.基于模型的商用车转向盘操纵阻力矩研究[J].汽车工程, 2019, 41(6):662-667
[23]ZHU X M, SONG J, CHEN S.A research on steering wheel resistance torque of a commercial vehicle based on lugre model[J].Automotive Engineering, 2019, 41(6):662-667
[24]CHO J R, LEE H W, SOHN J S, et al.Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J].European Journal of Mechanics Series a Solids, 2006, 5(6):914-926
[25]朱晟泽, 黄晓明.横向刻槽混凝土路面轮胎滑水速度数值模拟研究[J].东南大学学报:自然科学版, 2016, 46(6):1001-1005
[26]ZHU S Z, HUANG X M.Numerical simulation of tire hydroplaning speed on transverse grooved concrete pavements[J].Journal of Southeast University(Natural Science Edition), 2016, 46(6):1001-1005
[27]曹青青.路表抗滑特性对整车稳定性影响分析[D].南京:东南大学, 2018.
[28]CAO Q Q.Analysis of vehicle stability influenced by skid resistance of asphalt pavement[D]. Nanjing: Southest University, 2018 (in Chinese).
[29]蔡靖, 李岳, 宗一鸣.湿滑道面飞机轮胎临界滑水速度计算方法比较[J].航空学报, 2017, 38(7):1-12
[30]CAI J, LI Y, ZONG Y M.Comparasion of prediction methods for critical hydroplaning speed of aircraft tire on wet pavement[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(7):1-12
[31]COLLINGS W, EL-SAYEGH Z, REN J, et al.Modelling of off-road truck tire-rim slip using finite element analysis[J].SAE International Journal of Advances and Current Practices in Mobility, 2022, 4(6):2335-2341
[32]杨洋, 朱兴一, 赵鸿铎.基于真实道面模型的机轮滑水行为影响因素[J].航空学报, 2022, 43(1):124813-124813
[33]YANG Y, ZHU X Y, ZHAO H Z.Aircraft tire hydroplaning behavior based on real texture of surface runway model[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124813-124813
[34]KANE M, DO M T, CEREZO V, et al.Contribution to pavement friction modelling: An introduction of the wetting effect[J]. International Journal of Pavement Engineering, 2017, 20(8), 965–976.[J].International Journal of Pavement Engineering, 2017, 20(8):965-976
[35]GIM G, NIKRAVESH P E.An analytical model of pneumatic tyres for vehicle dynamic simulations[J].International Journal of Vehicle Design, 2014, 12(1):19-39
[36]郭孔辉.统一轮胎模型[J].机械工程学报, 2016, 52(12):90-99
[37]GUO K H.UniTire: unified tire model[J].Journal of Mechanical Engineering, 2016, 52(12):90-99
[38]WIT C C D, TSIOTRAS P.Dynamic tire friction models for vehicle traction control[J]. Decision and Control, 1999, 1: 3746-3751.[J].Decision and Control, 1999, 1(1):3746-3751
[39]UNITED N.Regulation No. 117: Uniform provisions concerning the approval of tyres with regard to rolling sound emissions and/or to adhesion on wet surfaces and/or to rolling resistance[S], 2014: 1-96.
[40]ASTM.E1337-90: Standard Test Method for Determining Longitudinal Peak Braking Coefficient of Paved Surfaces Using Standard Reference Test Tire[S], 2012: 1-5.
[41]ZHU H J, JAMES Y, ZHANG Y Q.Modeling and optimization for pneumatically pitch-interconnected suspensions of a vehicle[J]. Journal of Sound and Vibration, 2018, 432: 290-309.[J].Journal of Sound and Vibration, 2018, 432(3):290-309
[42]朱贺,李静菲.无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J].机械设计, 2020, 37(s1):72-76
[43]ZHU He, LI Jinfei.Analysis on braking stability of towbar-less towing vehicle under steering and braking[J].JOURNAL OF MACHINE DESIGN, 2020, 37(s1):72-76
[44]鲁鑫,孙宇宁,唐杰,张威..考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析[J].北京航空航天大学学报, 2023, 1(1):1-13
[45]LU X, SUN Y N, TANG J, et al.Kinematic characteristics analysis of vehicle-aircraft traction tax system considering wheel deformation[J].Journal of Beijing University of Aeronautics and Astronautics, 2023, 1(1):1-13
[46]王汉平, 张哲, 李倩.路面时域模拟的谐波叠加组分中相位角的相干性研究[J].北京理工大学学报, 2019, 39(10):1-5
[47]WANG H P, ZHANG Z, LI Q.Coherence of phase angle of harmonic superposition components in time domain simulation of road roughness for right and left wheel tracks[J].Transactions of Beijing Institute of Technology, 2019, 39(10):1-5
[48]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.机械振动道路路面谱测量数据报告: GB/T 7031-2005[S].北京:中国标准出版社, 2005.
[49]General Administration of Quality Supervision, Inspection and Quarantine of the People’ s Republic of China, Standardization Administration of the People’ s Republic of China.Mechanical vibration-Road surface profiles-Reporting of measured data: GB/T 4970-2009[S]. Beijing: Standards Press of China, 2005 (in Chinese).
[36] ABREU R, BOTHA T, HAMERSMA H. Model-free intelligent control for antilock braking systems on rough roads[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2023, 7(3): 269-285.
[37] ZHAO Q, ZHENG H, KAKU C, et al. Safety spacing control of truck platoon based on emergency braking under different road conditions[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2023, 7(1): 69-81.
文章导航

/