复杂来流条件下设计参数对S弯喷管红外辐射特征影响
收稿日期: 2024-01-02
修回日期: 2024-01-19
录用日期: 2024-02-21
网络出版日期: 2024-02-23
基金资助
国家自然科学基金(52376032);陕西省杰出青年科学基金(2021JC-10);国家科技重大专项(J2019-Ⅱ-0015-0036);航空发动机及燃气轮机基础科学中心项目(P2022-B-I-002-001,P2022-B-Ⅱ-010-001);中央高校基本科研业务费专项资金(501XTCX2023146001)
Influence of design parameters on infrared radiation characteristics of serpentine nozzles under complex flow conditions
Received date: 2024-01-02
Revised date: 2024-01-19
Accepted date: 2024-02-21
Online published: 2024-02-23
Supported by
National Natural Science Foundation of China(52376032);Funds for Distinguished Young Scholars of Shaanxi Province(2021JC-10);National Science and Technology Major Project (J2019-Ⅱ-0015-0036);Science Center for Gas Turbine Project (P2022-B-I-002-001,P2022-B-Ⅱ-010-001);The Fundamental Research Funds for the Central Universities(501XTCX2023146001)
为了获取在航空发动机混合室产生的复杂来流条件影响下,S弯喷管设计参数对其红外辐射特征的影响规律和产生机制,采用数值模拟方法计算了完全遮挡设计准则约束下不同宽高比和长径比S弯喷管的红外辐射特性,并分析了设计参数不同时复杂非均匀流动与红外辐射特性的耦合机理。研究结果表明,混合室中波瓣混合器诱导产生的流向涡会卷吸高温燃气冲击喷管壁面,使得S弯喷管上下壁面出现了大面积热斑,垂直探测面上的总红外特征水平相比水平探测面增大了1.22倍。随着出口宽高比增大,热斑面积由于流向涡贴壁现象的加剧而增大,而喷流长度由于大气掺混作用加强而减小,使得垂直探测面上的总红外特征水平几乎没有变化,水平探测面由于受热斑影响较小,总红外特征水平下降30.5%。当长径比较小时,由于壁面偏转曲率较大,S弯喷管内部出现了流动分离现象,壁面热斑强度大幅提升,使得水平和垂直探测面上的红外特征水平与未发生流动分离相比分别增加了23.5%和38.6%。随着长径比进一步增大,壁面热斑因内外涵气流充分掺混而扩大,总红外特征水平在水平和垂直探测面上分别增大了15.0%和29.4%。
是介 , 周莉 , 史经纬 , 王占学 . 复杂来流条件下设计参数对S弯喷管红外辐射特征影响[J]. 航空学报, 2024 , 45(17) : 530082 -530082 . DOI: 10.7527/S1000-6893.2024.30082
To investigate the influence and generation mechanism of design parameters on the infrared radiation characteristics of serpentine nozzles under complex flow conditions generated in the mixing chamber of aviation engines, this study employs numerical simulation methods to calculate the infrared radiation characteristics of serpentine nozzles with different aspect ratios and length-diameter ratios. All serpentine nozzle models meet the constraint of completely shielding the high-temperature components. Additionally, the study analyzes the coupling mechanism between complex non-uniform flow and infrared radiation characteristics with different design parameters. The research findings indicate that the longitudinal vortex generated by the lobed mixer in the mixing chamber entrains high-temperature gas impacting the nozzle wall, leading to a large area of hot spots appearing on the upper and lower walls of the serpentine nozzle. On the vertical detection plane, the total infrared characteristic level increases by 1.22 times compared to that on the horizontal detection plane. As the aspect ratio increases, the hot spot area enlarges due to the intensified longitudinal vortex attachment, while the jet length decreases because of the enhanced atmospheric mixing. Consequently, the total infrared characteristic level on the vertical detection plane remains nearly unchanged, whereas that on the horizontal detection plane decreases by 30.5% due to the minor influence of hot spots. When the length-diameter ratio is small, flow separation occurs inside the serpentine nozzle due to the large curvature of the wall. The intensity of the hot spots on the wall surface significantly increases, causing the total infrared characteristic level on the horizontal and vertical detection planes to increase by 23.5% and 38.6%, respectively, compared to the cases without flow separation. With further increase in the length-diameter ratio, the hot spots on the wall expand due to the full mixing of the core flow and the bypass flow, resulting in 15.0% and 29.4% increase in total infrared characteristic level on the horizontal and vertical detection planes, respectively.
1 | 阴鹏, 贾高伟, 杨希祥. 外军无人机隐身设计发展研究[J]. 飞航导弹, 2021(12): 69-74. |
YIN P, JIA G W, YANG X X. Research on stealth design development of foreign mil-itary UAV[J]. Aerodynamic Missile Journal, 2021(12):69-74 (in Chinese). | |
2 | 任淼, 刘晶晶, 文琳. 2021年国外空空导弹发展动态研究[J]. 航空兵器, 2022, 29(4): 33-41. |
REN M, LIU J J, WEN L. Research on foreign air-to-air missiles’ development in 2021[J]. Aero Weaponry, 2022, 29(4): 33-41 (in Chinese). | |
3 | 车竞, 何开锋, 钱炜祺. 制空型无人机的关键技术、气动布局及特性[J]. 空气动力学学报, 2017, 35(1): 13-19. |
CHE J, HE K F, QIAN W Q. Key technique and aerodynamic configuration characteristic of UCAV with command of the air[J]. Acta Aerodynamica Sinica, 2017, 35(1): 13-19 (in Chinese). | |
4 | RAO G A, MAHULIKAR S P. Integrated review of stealth technology and its role in airpower[J]. The aeronautical journal, 2002, 106(1066): 629-642. |
5 | MAHULIKAR S P, SONAWANE H R, RAO G A. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences, 2007, 43(7): 218-245. |
6 | 邓洪伟, 尚守堂, 金海, 等.航空发动机隐身技术分析与论述[J]. 航空科学技术, 2017, 28(10): 1-7. |
DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7 (in Chinese). | |
7 | 王海峰. 高性能战斗机与发动机协同设计中的关键技术[J/OL]. 航空学报, (2024-01-17) [2024-01-20]. |
WANG H F. Key technologies in collaborative airframe-engine design for high performance fighters[J/OL]. Acta Aeronautica et Astronautica Sinica, (2024-01-17) [2024-01-20]. | |
8 | 沈林成, 朱华勇, 牛轶峰. 从X-47B看美国无人作战飞机发展[J]. 国防科技, 2013, 34(5): 28-36. |
SHEN L C, ZHU H Y, NIU Y F. A survey of unmanned combat aircraft system development from X-47B[J]. National Defense Science & Technology, 2013, 34(5): 28-36 (in Chinese). | |
9 | SEPULVEDA E, SMITH H. Technology challenges of stealth unmanned combat aerial vehicles[J]. The Aeronautical Journal, 2017, 121(1243): 1261-1295. |
10 | ANDERSSON M. Validation of the computer program SIGGE against spectral IR-measurements on an engine test rig: FOI-R-0555-SE[R]. Stockholm: Swedish Defence Research Agency, 2002. |
11 | EDEFUR H, TORMALM M H. Design and integration of a low observable intake for the MULDICON plat-form: AIAA-2018-3162[R]. Reston: AIAA, 2018. |
12 | 徐顶国, 桑建华, 罗明东. 红外隐身技术在无人机上的应用研究[J]. 红外与激光工程, 2012, 41(12): 3154-3159. |
XU D G, SANG J H, LUO M D. Research on application of UAVS’ infrared stealth technology[J]. Infrared and Laser Engineering, 2012, 41(12): 3154-3159 (in Chinese). | |
13 | JOHANSSON M, DALENBRING M. Calculation of IR signatures from airborne vehicles[C]∥Schum K. Modeling and Simulation for Military Applications. Bellingham: SPIE Press, 2006. |
14 | AN C H, KANG D W, BAEK S T, et al. Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicle[J]. Journal of Aircraft, 2016, 53(6): 1768-1778. |
15 | NOH S, BAE J Y, KIM J, et al. Analysis of flow and infrared signature characteristics according to UCAV nozzle shape[J]. Journal of the Korean Society of Propulsion Engineers, 2019, 23(5): 27-35. |
16 | KANG D W, KIM J Y, MYONG R S, et al. Computational investigation of the effect of UAV engine nozzle configuration on infrared signature[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2013, 41(10): 779-787. |
17 | KANG D W, KIM I D, MYONG R S, et al. Investigation of aircraft plume IR signature for various nozzle configurations and atmospheric conditions[J]. Journal of The Korean Society for Aeronautical & Space Sciences, 2014, 42(1): 10-19. |
18 | LEE Y R, LEE J W, SHIN C M, et al. Characteristics of flow field and IR of double serpentine nozzle plume for varying cross sectional areas and flight conditions in UCAV[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2021, 49(8): 689-698. |
19 | SHAN Y, ZHOU X, TAN X, et al. Parametric design method and performance analysis of double S-shaped nozzles[J]. International Journal of Aerospace Engineering, 2019, 2019(1): 4694837. |
20 | 周孝明, 单勇, 宫禹,等. 低可探测双S弯喷管红外辐射特征研究[J]. 重庆理工大学学报(自然科学), 2018, 32(12): 54-61. |
ZHOU X M, SHAN Y, GONG Y, et al. Numerical simulations on infrared radiation characteristics of low detectable double S-shaped nozzles[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(12): 54-61 (in Chinese). | |
21 | 桑学仪, 吉洪湖, 王丁. 长径比和偏径比对双S形二元喷管性能的影响[J]. 红外技术, 2019, 41(5): 443-449. |
SANG X Y, JI H H, WANG D. Influence of length-diameter ratio and offset-diameter ratio on performance of serpentine 2-D nozzle[J]. Infrared Technology, 2019, 41(5):443-449 (in Chinese). | |
22 | 王宇恒, 吉洪湖, 程稳, 等. 收扩喷管设计对双S形二元排气系统气动与红外特征的影响[J]. 红外与激光工程, 2021, 50(11): 95-104. |
WANG Y H, JI H H, CHENG W, et al. Influence of design of convergent-divergent nozzle on aerodynamic and infrared characteristics of serpentine 2-D exhaust system[J]. Infrared and Laser Engineering, 2021, 50(11):95-104. | |
23 | CHENG W, WANG Z, ZHOU L, et al. Investigation of infrared signature of serpentine nozzle for turbofan[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(1): 170-178. |
24 | 程稳, 周莉, 王占学, 等. 几何参数对S弯喷管红外辐射特性的影响[J]. 推进技术, 2018, 39(9): 1974-1985. |
CHENG W, ZHOU L, WANG Z X, et al. Effects of geometric parameters on infrared signature of serpentine nozzle[J]. Journal of Propulsion Technology, 2018, 39(9): 1974-1985 (in Chinese). | |
25 | 程稳. S弯喷管红外辐射特性预测及优化设计方法[D]. 西安: 西北工业大学, 2019. |
CHENG W. Infrared signature prediction and optimization design method for serpentine nozzle[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese). | |
26 | 孙鹏, 周莉, 王占学, 等. 出口宽高比及旋流角对双涵道S弯喷管温度分布的影响[J]. 航空动力学报, 2022, 37(2): 391-403. |
SUN P, ZHOU L, WANG Z X, et al. Effect of aspect ratio and swirl angle on temperature distribution of double serpentine nozzle for turbofan[J]. Journal of Aerospace Power, 2022, 37(2): 391-403 (in Chinese). | |
27 | 孙啸林, 王占学, 周莉, 等. 基于多参数耦合的S弯隐身喷管设计方法研究[J].工程热物理学报, 2015, 36(11): 2371-2375 |
SUN X L, WANG Z X, ZHOU L, et al. The design method of serpentine stealth nozzle based on coupled parameters[J]. Journal of Engineering Thermophysics, 2015, 36(11): 2371-2375 (in Chinese). | |
28 | SUN X L, WANG Z X, ZHOU L, et al. Influences of design parameters on a double serpentine convergent nozzle[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(7): 072301. |
29 | RIVIèRE P, SOUFIANI A. Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature[J]. International Journal of Heat and Mass Transfer, 2012, 55(13): 3349-3358. |
30 | TASHKUN S A, PEREVALOV V I. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(9): 1403-1410. |
31 | ROTHMAN L S, GORDON I E, BARBER R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150. |
32 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 测量不确定度评定和表示: [S]. 北京: 中国标准出版社, 2018. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Guide to the evaluation and expression of uncertainty in measurement: [S]. Beijing: Standards Press of China, 2018 (in Chinese). |
/
〈 |
|
〉 |