流体力学与飞行力学

基于频率加权的后缘拍动变体机翼流场模态分解

  • 张伟 ,
  • 聂旭涛 ,
  • 欧李苇 ,
  • 夏智勋 ,
  • 陈磊
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.中国空气动力研究与发展中心,绵阳 621000
.E-mail: chenl@nudt.edu.cn

收稿日期: 2023-11-07

  修回日期: 2023-12-11

  录用日期: 2024-02-01

  网络出版日期: 2024-02-23

基金资助

国家自然科学基金(52305518)

Frequency⁃weighted dynamic mode decomposition for trailing edge flapping airfoil flow

  • Wei ZHANG ,
  • Xutao NIE ,
  • Liwei OU ,
  • Zhixun XIA ,
  • Lei CHEN
Expand
  • 1.College of Aerospace Science and Engineer,National University of Defense Technology,Changsha 410073,China
    2.China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: chenl@nudt.edu.cn

Received date: 2023-11-07

  Revised date: 2023-12-11

  Accepted date: 2024-02-01

  Online published: 2024-02-23

Supported by

National Natural Science Foundation of China(52305518)

摘要

变体机翼是提高飞行器机动性能、高升低阻,满足复杂多变工况的重要解决途径之一,探索机翼变形对流场的影响机制是变形控制的基础。针对后缘拍动的柔性变体机翼,为准确分析拍动影响机制,提出了频率加权排序的动力学模态分解方法。针对不同工况下数值模拟结果或试验数据,开展了频率加权法同常规初始值、模态范数排序方法的对比。结果显示频率加权法得到的2阶模态频率与拍动频率吻合,表明该方法能准确体现机翼后缘周期性拍动对流场结构影响,反映机翼变形对尾迹的破碎作用。在相同重构模态数量下,拍动频率为300.0 Hz时,基于数值模拟数据,频率加权法、初始值法、模态范数法重构的速度场误差分别为0.39%、0.58%、3.25%,基于粒子图像测速设备(PIV)试验数据的误差分别为7.56%、8.77%、10.56%,表明频率加权法误差最小,能较好用于主动拍动变体机翼的物理场分析及后续反馈控制。

本文引用格式

张伟 , 聂旭涛 , 欧李苇 , 夏智勋 , 陈磊 . 基于频率加权的后缘拍动变体机翼流场模态分解[J]. 航空学报, 2024 , 45(18) : 129846 -129846 . DOI: 10.7527/S1000-6893.2024.29846

Abstract

Morphing airfoil is one of the essential solutions to improving the aircraft maneuverability performance, high lift and low drag, and to meeting variable flight conditions. Exploring the mechanism of the wing deformation influence on the flow is the precondition of control. A frequency-weighted ordering approach of dynamic mode decomposition is proposed to analyze the influence mechanism of trailing-edge flapping of a morphing airfoil. The frequency-weighted method is compared with conventional ones, such as the initial value method and the norm method, in terms of the numerical simulation results and experimental data under different working conditions. The second modal frequencies obtained by the frequency-weighted method match the flapping frequencies, indicating its ability to reveal the influence of the periodical flapping on the inner flow structure and wake. Based on the numerical simulation data, with the same number of reconstructed modes and a flapping frequency of 300.0 Hz, the errors of the frequency-weighted, initial value, and norm methods are 0.39%, 0.58%, and 3.25%, respectively. Based on the PIV test data, the errors become 7.56%, 8.77%, and 10.56%. The frequency-weighted method has the smallest error and can be better used for the flow analysis and subsequent feedback control of active flapping morphing wings.

参考文献

1 WIMPRESS J K. Aerodynamic technology applied to takeoff and landing[J]. Annals of the New York Academy of Sciences1968154(2): 962-981.
2 ANDERS S, III W S, WASHBURN A. Active flow control activities at NASA langley[C]∥ 2nd AIAA Flow Control Conference. Reston: AIAA, 2004: 2623.
3 SCOTT COLLIS S, JOSLIN R D, SEIFERT A, et al. Issues in active flow control: Theory, control, simulation, and experiment[J]. Progress in Aerospace Sciences200440(4-5): 237-289.
4 KHAN S, GRIGORIE T L, BOTEZ R M, et al. Novel morphing wing actuator control-based Particle Swarm Optimisation[J]. The Aeronautical Journal2020124(1271): 55-75.
5 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报201836(2): 163-179.
  KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica201836(2): 163-179 (in Chinese).
6 NIU W, ZHANG Y F, CHEN H X, et al. Numerical study of a supercritical airfoil/wing with variable-camber technology[J]. Chinese Journal of Aeronautics202033(7): 1850-1866.
7 CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics202235(5): 220-246.
8 HE X Y, LIU Y, CHEN Y X, et al. Wake of a bio-inspired flapping wing with morphing wingspan[J]. Acta Mechanica Sinica202339(10): 323061.
9 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报202445(6): 629595.
  CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629595 (in Chinese).
10 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报202243(3): 226071.
  ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica202243(3): 226071 (in Chinese).
11 LI L, WANG W C, WU X J. A wind tunnel investigation of the unsteady aerodynamic characteristics of bionic flapping wings with three-dimensional complex motion[J]. AIP Advances202313(5): 055116.
12 FU J J, HEFLER C, QIU H H, et al. Effects of aspect ratio on flapping wing aerodynamics in animal flight[J]. Acta Mechanica Sinica201430(6): 776-786.
13 PECORA R. Morphing wing flaps for large civil aircraft: Evolution of a smart technology across the Clean Sky program[J]. Chinese Journal of Aeronautics202134(7): 13-28.
14 WONG A, BIL C, MARINO M. Design and aerodynamic performance of a FishBAC morphing wing[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 1298.
15 WU J H, LI G, CHEN L, et al. Unsteady aerodynamic performance of a tandem flapping-fixed airfoil configuration at low Reynolds number[J]. Physics of Fluids202234(11): 111907.
16 MENG X G, CHEN Z S, WANG D S, et al. Aerodynamic interference of three flapping wings in tandem configuration[J]. Physics of Fluids202335(3): 031911.
17 张进, 周雷, 曹博超. 强化学习方法在翼型拍动实验中的应用[J]. 空气动力学学报41(9): 20-29.
  ZHANG J, ZHOU L, CAO B C. Application of reinforcement learn-ing method in flapping airfoil exper-iment[J]. Acta Aerodynamica Sinica202341(9): 20-29 (in Chinese).
18 TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal201755(12): 4013-4041.
19 SCHMID P J. Application of the dynamic mode decomposition to experimental data[J]. Experiments in Fluids201150(4): 1123-1130.
20 SCHMID P J, LI L, JUNIPER M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics201125(1): 249-259.
21 杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报202344(1): 626992.
  YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica202344(1): 626992 (in Chinese).
22 可钊, 时永鑫, 张鹏, 等. 基于全局POD降阶模型的复杂薄壁结构减振优化[J]. 航空学报202344(13): 227900.
  KE Z, SHI Y X, ZHANG P, et al. Vibration reduction optimization of complex thin-walled structures based on global POD reduced-order model[J]. Acta Aeronautica et Astronautica Sinica202344(13): 227900 (in Chinese).
23 韩忠华, 王绍楠, 韩莉, 等. 一种基于动模态分解的翼型流动转捩预测新方法[J]. 航空学报201738(1): 120034.
  HAN Z H, WANG S N, HAN L, et al. A novel method for automatic transition prediction of flows over airfoils based on dynamic mode decomposition[J]. Acta Aeronautica et Astronautica Sinica201738(1): 120034 (in Chinese).
24 DEEP D, SAHASRANAMAN A, SENTHILKUMAR S. POD analysis of the wake behind a circular cylinder with splitter plate[J]. European Journal of Mechanics - B202293: 1-12.
25 MOHAN A T, GAITONDE D V. Analysis of airfoil stall control using dynamic mode decomposition[J]. Journal of Aircraft201754(4): 1508-1520.
26 ZHANG Q S, LIU Y Z, WANG S F. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition[J]. Journal of Fluids and Structures201449: 53-72.
27 NEUMANN P, DE ALMEIDA V B C, MOTTA V, et al. Dynamic mode decomposition analysis of plasma aeroelastic control of airfoils in cascade[J]. Journal of Fluids and Structures202094: 102901.
28 张扬, 张来平, 邓小刚, 等. 飞行器大攻角复杂流动的POD和DMD对比分析[J]. 气体物理20183(5): 30-40.
  ZHANG Y, ZHANG L P, DENG X G, et al. POD and DMD analysis of complex separation flows over a aircraft model at high angle of attack[J]. Physics of Gases20183(5): 30-40 (in Chinese).
29 IWATANI Y, ASADA H, KAWAI S. POD, DMD, and resolvent analysis of transonic airfoil buffet[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 0461.
30 高传强, 张伟伟. 机翼跨声速抖振数值模拟及模态分析[J]. 航空学报201940(7): 122597.
  GAO C Q, ZHANG W W. Numerical simulation and modal analysis of transonic buffet flow over wings[J]. Acta Aeronautica et Astronautica Sinica201940(7): 122597 (in Chinese).
31 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报201637(9): 2679-2689.
  KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica201637(9): 2679-2689 (in Chinese).
32 GAO C Q, ZHANG W W, LI X T, et al. Mechanism of frequency lock-in in transonic buffeting flow[J]. Journal of Fluid Mechanics2017818: 528-561.
33 ZHAO Y X, DAI Z X, TIAN Y, et al. Flow characteristics around airfoils near transonic buffet onset conditions[J]. Chinese Journal of Aeronautics202033(5): 1405-1420.
34 DE CILLIS G, CHERUBINI S, SEMERARO O, et al. Stability and optimal forcing analysis of a wind turbine wake: comparison with POD[J]. Renewable Energy2022181: 765-785.
35 李凯, 杨静媛, 高传强, 等. 基于POD和代理模型的静气动弹性分析方法[J]. 力学学报202355(2): 299-308.
  LI K, YANG J Y, GAO C Q, et al. Static aeroelastic analysis based on proper orthogonal decomposition and surrogate model[J]. Chinese Journal of Theoretical and Applied Mechanics202355(2): 299-308 (in Chinese).
36 LI S F, KEVREKIDIS P G, YANG J. Characterization of elastic topological states using dynamic mode decomposition[J]. Physical Review B2023107(18): 184308.
37 谢庆墨, 陈亮, 张桂勇, 等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析[J]. 力学学报202052(4): 1045-1054.
  XIE Q M, CHEN L, ZHANG G Y, et al. Analysis of unsteady cavitation flow over hydrofoil based on dynamic mode decomposition[J]. Chinese Journal of Theoretical and Applied Mechanics202052(4): 1045-1054 (in Chinese).
38 JOVANOVI? M R, SCHMID P J, NICHOLS J W. Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids201426(2): M30.010.
39 TU J H, ROWLEY C W, LUCHTENBURG D M, et al. On dynamic mode decomposition: Theory and applications[J]. Journal of Computational Dynamics20141(2): 391-421.
40 TOWNE A, SCHMIDT O T, COLONIUS T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[J]. Journal of Fluid Mechanics2018847: 821-867.
41 SUN C, TIAN T, ZHU X C, et al. Input-output reduced-order modeling of unsteady flow over an airfoil at a high angle of attack based on dynamic mode decomposition with control[J]. International Journal of Heat and Fluid Flow202086: 108727.
42 MOHAN A T, VISBAL M R, GAITONDE D V. Model reduction and analysis of deep dynamic stall on a plunging airfoil using dynamic mode decomposition[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1058.
43 MENON K, MITTAL R. Dynamic mode decomposition based analysis of flow over a sinusoidally pitching airfoil[J]. Journal of Fluids and Structures202094: 102886.
44 ZHENG H Y, XIE F F, ZHENG Y, et al. Propulsion performance of a two-dimensional flapping airfoil with wake map and dynamic mode decomposition analysis[J]. Physical Review E201999(6-1): 063109.
45 WANG C Y, LIU Y, XU D, et al. Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing[J]. Physics of Fluids202234(5): 051903.
46 NADERI M H, EIVAZI H, ESFAHANIAN V. New method for dynamic mode decomposition of flows over moving structures based on machine learning (hybrid dynamic mode decomposition)[J]. Physics of Fluids201931(12): 127102.
47 TISSOT G, CORDIER L, BENARD N, et al. Model reduction using Dynamic Mode Decomposition[J]. Comptes Rendus Mecanique2014342(6-7): 410-416.
48 KOU J Q, ZHANG W W. An improved criterion to select dominant modes from dynamic mode decomposition[J]. European Journal of Mechanics, B/Fluids, 201762: 109-129.
49 BISTRIAN D A, NAVON I M. The method of dynamic mode decomposition in shallow water and a swirling flow problem[J]. International Journal for Numerical Methods in Fluids201783(1): 73-89.
50 ZHANG W, CHEN L, XIA Z X, et al. Numerical and experimental studies of a morphing airfoil with trailing edge high-frequency flapping[J]. Physics of Fluids202335(12): 121904.
文章导航

/