FL⁃61结冰风洞翼型俯仰振荡机构研制
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-08-03
网络出版日期: 2024-02-19
基金资助
国家重点研发计划(2022YFE0203700);航空科学基金(2023Z010027001)
A wing pitch oscillation mechanism for FL⁃61 icing wind tunnel
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-03
Online published: 2024-02-19
Supported by
National Key R&D Program of China(2022YFE0203700);Aeronautical Science Foundation of China(2023Z010027001)
许岭松 , 吴渊 , 朱东宇 , 张付昆 , 刘昱 . FL⁃61结冰风洞翼型俯仰振荡机构研制[J]. 航空学报, 2023 , 44(S2) : 729296 -729296 . DOI: 10.7527/S1000-6893.2023.29296
To study the icing characteristics of airfoil during the periodic variation of the angle of attack, an oscillating mechanism adapted to the FL-61 icing wind tunnel was developed. This mechanism enables the airfoil’s angle of attack to vary sinusoidally during icing tests. The mechanism is installed on the active side of the test section sidewall and the rotational speed of a servo motor is adjusted to achieve continuous adjustment of the airfoil’s pitching motion frequency. The amplitude of the airfoil’s motion can be modified by changing the mechanical eccentric wheel, and the average angle of attack can be adjusted by replacing the adapter. This design offers advantages such as the unidirectional rotation of the servo motor, lower demands on motor dynamics, and simplified control method. Through testing, the mechanism has demonstrated the angle control accuracy (≤3'),the maximum oscillation frequency (6 Hz). The device has been successfully applied in the FL-61 icing wind tunnel, showing good repeatability and obtaining ice formation characteristics under various oscillation conditions, providing an experimental platform for further research on the icing characteristics of airfoils in pitching motion and oscillation.
Key words: icing; wind tunnel test; icing wind tunnel; oscillation; airfoil
1 | COFFMAN H. Review of helicopter icing protection systems[C]∥ Proceedings of the Aircraft Design, Systems and Technology Meeting. Reston: AIAA, 1983. |
2 | 杨常卫, 胡和平, 马艳玲, 等. 直升机旋翼桨叶防/除冰技术新思路[J]. 直升机技术, 2009(3): 47-51. |
YANG C W, HU H P, MA Y L, et al. An new idea on anti-icing and de-icing of helicopter rotor blade[J]. Helicopter Technique, 2009(3): 47-51 (in Chinese). | |
3 | 任智勇, 李志鹏, 王俊琦, 等. 直升机防除冰系统人工结冰试验[J]. 实验流体力学, 2019, 33(5): 65-70. |
REN Z Y, LI Z P, WANG J Q, et al. Artificial icing tests of the helicopter anti-icing system[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 65-70 (in Chinese). | |
4 | HUANG M Q, YUAN H G, WANG L Q, et al. Experimental investigation on the performance degradation of helicopter rotor due to ice accretion[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(4): 811-822. |
5 | 王正之. 直升机旋翼结冰数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017. |
WANG Z Z. Numerical simulation and experimental study on helicopter rotor icing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
6 | 王莹, 高超, 吕哲. 跨声速风洞翼型动态失速试验系统研制[J]. 科学技术与工程, 2018, 18(32): 95-103. |
WANG Y, GAO C, LV Z. The development of airfoil dynamic stall experiment system in a transonic wind tunnel[J]. Science Technology and Engineering, 2018, 18(32): 95-103 (in Chinese). | |
7 | 康洪铭, 唐领, 孔鹏, 等. FL-11风洞旋翼翼型俯仰/沉浮动态试验装置的研制[J]. 实验流体力学, 2021, 35(4): 98-105. |
KANG H M, TANG L, KONG P, et al. A pitching and plunging dynamic test equipment of rotor blade airfoils in the FL-11 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 98-105 (in Chinese). | |
8 | 史志伟, 耿存杰, 明晓, 等. 旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J]. 实验流体力学, 2007, 21(3): 18-23. |
SHI Z W, GENG C J, MING X, et al. Experimental investigation on unsteady aerodynamics of rotor-blade airfoil[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 18-23 (in Chinese). | |
9 | 周瑞兴, 上官云信, 郗忠祥, 等. 翼型低速动态测压实验的初步分析[J]. 流体力学实验与测量, 1997, 11(3): 28-33. |
ZHOU R X, SHANGGUAN Y X, XI Z X, et al. The elementary analysis of low-speed airfoil dynamic pressure measurement experiments[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(3): 28-33 (in Chinese). | |
10 | 林永峰, 黄建萍, 黄水林, 等. 直升机旋翼翼型动态失速特性试验研究[J]. 航空科学技术, 2012, 23(4): 25-28. |
LIN Y F, HUANG J P, HUANG S L, et al. Experimental investigation of rotor airfoil dynamic stall characteristics[J]. Aeronautical Science & Technology, 2012, 23(4): 25-28 (in Chinese) | |
11 | 张卫国, 李国强, 宋奎辉, 等. 旋翼翼型高速风洞动态试验装置研制[J]. 工程设计学报, 2022, 29(4): 500-509. |
ZHANG W G, LI G Q, SONG K H, et al. Development of dynamic test equipment for rotor airfoil in high speed wind tunnel[J]. Chinese Journal of Engineering Design, 2022, 29(4): 500-509 (in Chinese). | |
12 | 孔卫红, 陈仁良, 孙振航. 旋翼翼型低速动态失速研究[J]. 南京航空航天大学学报, 2018, 50(2): 213-220. |
KONG W H, CHEN R L, SUN Z H. Numerical investigation of dynamic stall on rotor airfoil in low-speed flow[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 213-220 (in Chinese). | |
13 | 常兴华, 马戎, 张来平, 等. S1223翼型俯仰-沉浮运动的非定常气动特性分析[J]. 空气动力学学报, 2017, 35(1): 62-70. |
CHANG X H, MA R, ZHANG L P, et al. Numerical study of the phunging-pitching motion of S1223 airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(1): 62-70 (in Chinese). | |
14 | 侯宇飞, 李志平. 仿生正弦前缘对翼面动态失速的影响[J]. 航空学报, 2020, 41(1): 123276. |
HOU Y F, LI Z P. Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123276 (in Chinese). | |
15 | 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4): 787-797. |
YANG X Q, CHENG S K, YANG A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797 (in Chinese). | |
16 | 杨鹤森, 赵光银, 梁华, 等. 翼型动态失速影响因素及流动控制研究进展[J]. 航空学报, 2020, 41(8): 023605. |
YANG H S, ZHAO G Y, LIANG H, et al. Research progress on influence factors of airfoil dynamic stall and flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 023605 (in Chinese). | |
17 | 曹普孙, 张威, 胡偶. 基于CCAR-29附录C的旋翼结冰特性研究[J]. 直升机技术, 2019(3): 1-4, 9. |
CAO P S, ZHANG W, HU O. Research for rotor icing property based on CCAR-29 appendix C[J]. Helicopter Technique, 2019(3): 1-4, 9 (in Chinese). | |
18 | 李国知, 曹义华. 旋翼结冰对直升机飞行动力学特性的影响[J]. 航空学报, 2011, 32(2): 187-194. |
LI G Z, CAO Y H. Effect of rotor icing on helicopter flight dynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 187-194 (in Chinese). | |
19 | 刘国强, 董明明. 直升机旋翼桨叶结冰气动特性分析[J]. 航空科学技术, 2016, 27(8): 7-11. |
LIU G Q, DONG M M. The analysis of helicopter blade icing aerodynamic characteristics[J]. Aeronautical Science & Technology, 2016, 27(8): 7-11 (in Chinese). | |
20 | NARDUCCI R, REINERT T. Calculations of ice shapes on oscillating airfoils[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2011. |
21 | REINERT T, FLEMMING R J, NARDUCCI R, et al. Oscillating airfoil icing tests in the NASA Glenn research center icing research tunnel[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2011. |
22 | 朱东宇, 裴如男, 杨秋明, 等. FL-61结冰风洞热气防冰系统试验方法研究[J]. 气动研究与试验, 2023, 1(5): 107-112. |
ZHU D Y, PEI R N, YANG Q M, et al. Experimental research on a hot air anti-icing system in FL-61 icing wind tunnel[J]. Aerodynamic Research & Experiment, 2023, 1(5): 107-112 (in Chinese). | |
23 | SAE. Calibration and acceptance of icing wind tunnels ARP5905 [S]. Warrendale: SAE International, 2015. |
24 | HEFFERNAN R M, GAUBERT M. Structural and aerodynamic loads and performance measurements of an SA349/2 helicopter with an advanced geometry rotor: NASA-TM-88370[R]. Washington, D.C.: NASA, 1986. |
/
〈 |
|
〉 |