波浪情况下民机水上迫降性能数值分析
收稿日期: 2023-02-24
修回日期: 2023-04-10
录用日期: 2023-08-17
网络出版日期: 2023-09-04
基金资助
国家自然科学基金(11672133);江苏高校优势学科建设工程资助项目
Numerical analysis of civil aircraft ditching performance in wave condition
Received date: 2023-02-24
Revised date: 2023-04-10
Accepted date: 2023-08-17
Online published: 2023-09-04
Supported by
National Natural Science Foundation of China(11672133);A Project Founded by the Priority Academic Program Development of Jiangsu Higher Education institutions
为了研究波浪情况下民机水上迫降性能,选用计算流体力学的有限体积法求解非定常不可压缩RANS方程,基于VOF法、整体动网格法、斯托克斯五阶波浪模型和自适应网格技术,以空客A320-200为研究对象,按照适航规章相关要求与建议,构建了民机水上迫降数值仿真模型。首先,对比分析了静水面和波浪水面下飞机水上迫降过程。结果表明:相同初始飞行参数下,波浪水面下最大水平过载为2.42 g,是静水面的1.09倍;最大垂向过载为4.82 g,是静水面的2.82倍。2种情况下,空气垫效应和潜水现象明显,碰撞初段,飞机均受到吸力作用;波浪情况下,跳跃现象出现,但并未对飞机的运动过程产生剧烈影响。其次,研究了波浪参数对水上迫降性能的影响。分析结果表明:同一波峰撞击阶段内,波高越高,则最大水平过载和最大垂向过载越大;波长越长,则最大垂向过载越小;波高越高,波长越长,则最大下沉速度越大。
李勐 , 陈星伊 , 陈吉昌 , 吴彬 , 童明波 . 波浪情况下民机水上迫降性能数值分析[J]. 航空学报, 2024 , 45(2) : 28 -43 . DOI: 10.7527/S1000-6893.2023.28604
To study the ditching performance of civil aircraft in wave conditions, the finite volume method of computational fluid dynamics is used to solve the unsteady incompressible RANS equation. Based on the relevant requirements and suggestions of airworthiness regulations, VOF method, whole dynamic grid method, stokes fifth-order wave model and adaptive grid technology are used to construct the numerical simulation model. The research object is airbus A320-200. Firstly, the ditching process of aircraft in the calm water and wave condition is compared and analyzed. The results show that the maximum horizontal overload is 2.42 g in the wave condition, which is 1.09 times of that in the calm condition. The maximum vertical overload is 4.82 g, which is 2.82 times of that in the calm water condition. In both cases, cushion effect and diving phenomenon are obvious. In the initial stage of impact, the aircraft is affected by water suction. In the wave condition, jumping phenomenon appears, but does not have apparent effect on the ditching process. Secondly, the influence of wave factors on water ditching performance is studied. The results show that with the increase of the wave height, the maximum horizontal and vertical overload increase. With the increase of the wave length, the maximum vertical overload decreases. With the increase of the wave height and length, the maximum sinking velocity increases.
Key words: wave; civil aircraft; ditching; numerical wave generation; two phase flow
1 | 张苏. 水上迫降尾部吸能对飞机运动特性的影响[D]. 武汉: 武汉理工大学, 2013. |
ZHANG S. Effect of energy absorption of tail structure on the kinetic behavior during aricraft ditching[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). | |
2 | LINDENAU O, RUNG T. Review of transport aircraft ditching accidents[C]∥Proceedings of the 6th International KRASH Users’ Seminar (IKUS6). Stuttgart: TUHH, 2009: 15-17. |
3 | 吴世德, 田彬. 民用飞机水上迫降适航验证程序的研究[J]. 民用飞机设计与研究, 2007(3): 19-22, 27. |
WU S D, TIAN B. Research on airworthiness verification program of civil aircraft forced landing on water[J]. Civil Aircraft Design and Research, 2007(3): 19-22, 27 (in Chinese). | |
4 | PATEL A A, GREENWOOD R P JR. Transport water impact and ditching performance[R]. Pleasantville: Galaxy Scientific Corp NJ, 1996. |
5 | HUGHES K, CAMPBELL J. Helicopter crashworthiness: A chronological review of research related to water impact from 1982 to 2006[J]. Journal of the American Helicopter Society, 2008, 53(4): 429-441. |
6 | BENSCH L, SHIGUNOV V, BEUCK G, et al. Planned ditching simulation of a transport airplane[C]∥ KRASH Users Seminar. 2001: 411-439. |
7 | CAMPBELL J. Prediction of aircraft structural response during ditching: An overview of the SMAES project[C]∥Aerospace Structural Impact Dynamics International Conference. Wichita, Kansas: NCAT, 2012: 105-118. |
8 | GOMES J B. Numerical simulation of aircraft ditching of a generic transport aircraft: Implementation of an aerodynamic model[D]. Portugal: Instituto Superior Técnico, 2015. |
9 | GROENENBOOM P, CAMPBELL J, LUIS BENíTEZ M,et al.Innovative SPH methods for aircraft ditching[C]∥WCCM XI-ECCM V-ECFD VI. Barcelona: IACM & ECCOMAS, 2014: 1-12. |
10 | CLIMENT H, BENITEZ L, ROSICH F, et al. Aircraft ditching numerical simulation[C]∥ 25th Congress of the International Council of the Aeronautical Sciences. 2006. |
11 | ORTIZ R, PORTEMONT G, CHARLES J L, et al. Assesment of explicit FE capabilities for full scale coupled fluid/structure aircraft ditching simulation[J]. Office National D Etudes ET DE Recherches Aerospatiales Onera-Publications-TP, 2002 (167): 711.1-711.10. |
12 | WOODGATE M A, BARAKOS G N, SCRASE N, et al. Simulation of helicopter ditching using smoothed particle hydrodynamics[J]. Aerospace Science and Technology, 2019, 85: 277-292. |
13 | CLIMENT H, ARéVALO F, VIANA J T, et al. Ditching loads numerical and experimental alternatives[C]∥AIAA International Forum on Aerolasticity and Structural Dynamics. Reston: AIAA, 2019. |
14 | 屈秋林, 刘沛清, 郭保东, 等. 某型客机水上迫降的着水冲击力学性能数值研究[J]. 民用飞机设计与研究, 2009(): 64-69. |
QU Q L, LIU P Q, GUO B D, et al. Numerical study on the mechanical properties of landing impact of a passenger plane in water landing[J]. Civil Aircraft Design and Research, 2009(Sup 1): 64-69 (in Chinese). | |
15 | GUO B D, LIU P Q, QU Q L, et al. Effect of pitch angle on initial stage of a transport airplane ditching[J]. Chinese Journal of Aeronautics, 2013, 26(1): 17-26. |
16 | 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机SAX-40水上迫降力学性能数值研究[J]. 航空学报, 2013, 34(11): 2443-2451. |
GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2443-2451 (in Chinese). | |
17 | QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5): 1550-1558. |
18 | 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830-838. |
ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838 (in Chinese). | |
19 | 张韬, 李书, 代恒超. 大型客机水上迫降尾部吸力效应分析[J]. 中国科学: 技术科学, 2012, 42(12): 1407-1415. |
ZHANG T, LI S, DAI H C. Analysis of tail suction effect of large passenger plane forced landing on water[J]. Scientia Sinica (Technologica), 2012, 42(12): 1407-1415 (in Chinese). | |
20 | CHEN J, XIAO T H, SHEN L, et al. Numerical wave simulation and investigation of air-wave-aircraft interactions[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
21 | 侯斌. 波浪对直升机应急漂浮系统稳定性的影响[D]. 南京: 南京航空航天大学, 2016. |
HOU B. The influence of water wave on stability of helicopter emergency floating system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). | |
22 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
23 | FENTON J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2): 216-234. |
24 | AZCUETA R.Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research, 2001, 49: 70-79. |
25 | SPINOSA E, IAFRATI A. Experimental investigation of the fluid-structure interaction during the water impact of thin aluminium plates at high horizontal speed[J]. International Journal of Impact Engineering, 2021, 147: 103673. |
26 | 徐文岷, 李凯. 民用飞机弹性结构水上迫降试验载荷研究[J]. 航空学报, 2014, 35(4): 1012-1018. |
XU W M, LI K. Research on civil aircraft elastic structure ditching test load[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1012-1018 (in Chinese). | |
27 | THOMPSON W C. Rough-water ditching investigation of a model of a jet transport with the landing gear extended and with various ditching aids[M]. Washington, D. C. : NASA, 1959: 3-4. |
28 | THOMPSON W C. Ditching investigation of a 1/30-scale dynamic model of a heavy jet transport airplane: NASA-TM-X-2445 [R]. Washington, D. C. : NASA, 1972. |
/
〈 |
|
〉 |