固体力学与飞行器总体设计

考虑状态模糊性的结构非概率可靠性分析

  • 姜峰 ,
  • 李华聪 ,
  • 符江锋 ,
  • 刘显为
展开
  • 1.西北工业大学 动力与能源学院,西安 710072
    2.中国兵器工业试验测试研究院,华阴 714200
.E-mail: fjf@nwpu.edu.cn

收稿日期: 2023-12-15

  修回日期: 2024-01-02

  录用日期: 2024-01-25

  网络出版日期: 2024-02-02

基金资助

国家科技重大专项(J2019-V-0016-0111)

Non-probabilistic reliability analysis with fuzzy failure and safe states

  • Feng JIANG ,
  • Huacong LI ,
  • Jiangfeng FU ,
  • Xianwei LIU
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
    2.Norinco Group Testing and Research Institute,Huayin 714200,China
E-mail: fjf@nwpu.edu.cn

Received date: 2023-12-15

  Revised date: 2024-01-02

  Accepted date: 2024-01-25

  Online published: 2024-02-02

Supported by

National Science and Technology Major Project(J2019-V-0016-0111)

摘要

在实际工程中,有时很难明确判断结构所处的状态是安全的还是失效的,基于传统二元状态假设进行的非概率可靠性分析忽略了这种模糊性的存在,过于理想化。针对这一问题,以椭球模型量化不确定变量,引入模糊状态假设代替二元状态假设,开展了考虑状态模糊性的结构非概率可靠性分析研究:根据模糊状态假设,对结构所处的状态进行模糊描述,在此基础上结合无差别原则,发展了非概率模糊可靠度作为考虑状态模糊性时结构非概率可靠性的度量,同时开发出相应的Monte Carlo模拟方法对所提非概率模糊可靠度进行求解;为了克服Monte Carlo方法需要大量调用真实模型而导致的求解效率低下的问题,提出了一种基于主动学习Kriging的求解算法,从而建立了一套高效的能够考虑状态模糊性的结构非概率可靠性分析方法,通过算例和工程实例验证了所提可靠性分析方法的工程实用性。

本文引用格式

姜峰 , 李华聪 , 符江锋 , 刘显为 . 考虑状态模糊性的结构非概率可靠性分析[J]. 航空学报, 2024 , 45(20) : 229989 -229989 . DOI: 10.7527/S1000-6893.2024.29989

Abstract

In practical engineering, it is sometimes difficult to clearly determine the output state of a structure. The non-probabilistic reliability analysis with the binary state ignores the fuzzy output state, which is too ideal. To solve this problem, we conduct the non-probabilistic reliability analysis with fuzzy failure and safe states by introducing the fuzzy state assumption, with the input uncertainties quantified by the ellipsoidal model. According to the fuzzy state assumption, the states of structures are described by fuzziness, and then combined with the principle of indifference. The non-probabilistic fuzzy reliability degree is developed as a measure of the non-probabilistic reliability of the structure, followed by the corresponding Monte Carlo simulation method for the non-probabilistic fuzzy reliability. To overcome the inefficiency associated with the Monte Carlo simulation method, a novel active learning Kriging method is proposed. Finally, an efficient non-probabilistic reliability analysis method with fuzzy states is established. Examples are used to illustrate the engineering practicality of the proposed non-probabilistic reliability analysis method.

参考文献

1 WEI Z Z, JIN H, PEI X J, et al. A simplified approach to estimate the fatigue life of full-scale welded cast steel thin-walled tubular structures[J]. Thin-Walled Structures2021160: 107348.
2 SONG K L, ZHANG Y G, YU X S, et al. A new sequential surrogate method for reliability analysis and its applications in engineering[J]. IEEE Access20197: 60555-60571.
3 DANG C, VALDEBENITO M A, SONG J W, et al. Estimation of small failure probabilities by partially Bayesian active learning line sampling: Theory and algorithm[J]. Computer Methods in Applied Mechanics and Engineering2023412: 116068.
4 KIM M, JUNG Y, LEE M Y, et al. An expected uncertainty reduction of reliability: Adaptive sampling convergence criterion for Kriging-based reliability analysis[J]. Structural and Multidisciplinary Optimization202265(7): 206.
5 ZHONG C T, WANG M F, DANG C, et al. First-order reliability method based on Harris Hawks Optimization for high-dimensional reliability analysis[J]. Structural and Multidisciplinary Optimization202062(4): 1951-1968.
6 WANG C, MATTHIES H G. Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables[J]. Computer Methods in Applied Mechanics and Engineering2019355: 438-455.
7 檀中强, 潘骏, 胡明, 等. 基于椭球模型的机构非精确概率可靠性分析方法[J]. 机械工程学报201955(2): 168-176.
  TAN Z Q, PAN J, HU M, et al. Imprecise probabilistic reliability analysis method for MechanismBased on ellipsoid model[J]. Journal of Mechanical Engineering201955(2): 168-176 (in Chinese).
8 BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety199414(4): 227-245.
9 ELISHAKOFF Y B H A I. Convex models of uncertainty in applied mechanics[M]. Amsterdam: Elsevier, 1990.
10 JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering2011200(33-36): 2528-2546.
11 曹鸿钧, 段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报200522(5): 546-549, 578.
  CAO H J, DUAN B Y. An approach on the non-probabilistic reliability of structures based on uncertainty convex models[J]. Chinese Journal of Computational Mechanics200522(5): 546-549, 578 (in Chinese).
12 NI B Y, ELISHAKOFF I, JIANG C, et al. Generalization of the super ellipsoid concept and its application in mechanics[J]. Applied Mathematical Modelling201640(21-22): 9427-9444.
13 HONG L X, LI H C, GAO N, et al. Random and multi-super-ellipsoidal variables hybrid reliability analysis based on a novel active learning Kriging model[J]. Computer Methods in Applied Mechanics and Engineering2021373: 113555.
14 HONG L X, LI H C, FU J F, et al. Hybrid active learning method for non-probabilistic reliability analysis with multi-super-ellipsoidal model[J]. Reliability Engineering & System Safety2022222: 108414.
15 郭书祥,吕震宙. 结构体系的非概率可靠性分析方法[J]. 计算力学学报200219 (3): 332-335.
  GUO S, LU Z Z. A procedure of the analysis of non-probabilistic reliability of structural systems[J]. Chinese Journal of Computational Mechanics200219(3): 332-335 (in Chinese).
16 MENG Z, HU H, ZHOU H L. Super parametric convex model and its application for non-probabilistic reliability-based design optimization[J]. Applied Mathematical Modelling201855: 354-370.
17 WANG X J, WANG L, ELISHAKOFF I, et al. Probability and convexity concepts are not antagonistic[J]. Acta Mechanica2011219(1): 45-64.
18 JIANG C, LU G Y, HAN X, et al. Some important issues on first-order reliability analysis with nonprobabilistic convex models[J]. Journal of Mechanical Design2014136(3): 034501.
19 路国营. 基于非概率凸模型的可靠性分析及应用[D]. 长沙: 湖南大学, 2012.
  LU G Y. The reliability analysis and it’s application based on the non-probabilistic convex model[D].Changsha: Hunan University, 2012 (in Chinese).
20 毕仁贵. 考虑相关性的不确定凸集模型与非概率可靠性分析方法[D]. 长沙: 湖南大学, 2015.
  BI R G. Non-probabilistic uncertainty convex model and reliability analysis method incorporating correlation[D].Changsha: Hunan University, 2015 (in Chinese).
21 MENG Z, WAN H P, SHENG Z L, et al. A novel study of structural reliability analysis and optimization for super parametric convex model[J]. International Journal for Numerical Methods in Engineering2020121(18): 4208-4229.
22 黄晓宇, 王攀, 李海和, 等. 具有模糊失效状态的涡轮盘疲劳可靠性及灵敏度分析[J]. 西北工业大学学报202139(6): 1312-1319.
  HUANG X Y, WANG P, LI H H, et al. Fatigue reliability and sensitivity analysis of turbine disk with fuzzy failure status[J]. Journal of Northwestern Polytechnical University202139(6): 1312-1319 (in Chinese).
23 张萌. 统一模糊可靠性模型理论研究及叶片抗振模糊可靠性评估建模[D]. 西安: 西北工业大学, 2015.
  ZHANG M. Theoretical study on the unified fuzzy reliability model and reliability assessment modeling of blades to avoid resonance[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese).
24 FENG K X, LU Z Z, YUN W Y. Aircraft icing severity analysis considering three uncertainty types[J]. AIAA Journal201957(4): 1514-1522.
25 FENG K X, LU Z Z, PANG C, et al. Efficient numerical algorithm of profust reliability analysis: An application to wing box structure[J]. Aerospace Science and Technology201880: 203-211.
26 PANDEY D, TYAGI S K. Profust reliability of a gracefully degradable system[J]. Fuzzy Sets and Systems2007158(7): 794-803.
27 CAI K Y. System failure engineering and fuzzy methodolog: An introductory overview[J]. Fuzzy Sets and Systems199683(2): 113-133.
28 CAI K Y, WEN C Y, ZHANG M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context[J]. Fuzzy Sets and Systems199142(2): 145-172.
29 CAI K Y, WEN C Y, ZHANG M L. Fuzzy reliability modeling of gracefully degradable computing systems[J]. Reliability Engineering & System Safety199133(1): 141-157.
30 WANG J Q, LU Z Z, SHI Y. Aircraft icing safety analysis method in presence of fuzzy inputs and fuzzy state[J]. Aerospace Science and Technology201882-83: 172-184.
31 LING C Y, LU Z Z, SUN B, et al. An efficient method combining active learning Kriging and Monte Carlo simulation for profust failure probability[J]. Fuzzy Sets and Systems2020387: 89-107.
32 YUN W Y, LU Z Z, FENG K X, et al. A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption[J]. Engineering Structures2019183: 340-350.
33 KEYNES J M. A Treatise on probability[M]. London: Macmillan & Co., Ltd., 1921.
34 ZADEH L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis and Applications196823(2): 421-427.
35 FORRESTER A I J, SóBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. Chichester: Wiley, 2008.
36 DANG C, WEI P F, FAES M G R, et al. Interval uncertainty propagation by a parallel Bayesian global optimization method[J]. Applied Mathematical Modelling2022108: 220-235.
37 ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety201133(2): 145-154.
38 ZHANG Y S, LIU Y S, YANG X F, et al. An efficient Kriging method for global sensitivity of structural reliability analysis with non-probabilistic convex model[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability2015229(5): 442-455.
39 JIANG C, BI R G, LU G Y, et al. Structural reliability analysis using non-probabilistic convex model[J]. Computer Methods in Applied Mechanics and Engineering2013254: 83-98.
40 SONG J W, WEI P F, VALDEBENITO M A, et al. Data-driven and active learning of variance-based sensitivity indices with Bayesian probabilistic integration[J]. Mechanical Systems and Signal Processing2022163: 108106.
文章导航

/