涡轮动叶气膜冷却结构的凹槽状叶顶气热性能不确定性量化
收稿日期: 2023-12-14
修回日期: 2024-01-02
录用日期: 2024-01-28
网络出版日期: 2024-02-02
基金资助
国家自然科学基金(51936008)
Uncertainty quantification of aerothermal performance of squealer tip with film cooling structure
Received date: 2023-12-14
Revised date: 2024-01-02
Accepted date: 2024-01-28
Online published: 2024-02-02
Supported by
National Natural Science Foundation of China(51936008)
提出了基于遗传算法加速策略的高效燃气涡轮叶片气热性能不确定性分析系统,此外还发展了一种叶顶气热特性不确定性量数据分析算法。所提出的系统和算法被用于考虑工况波动和几何参数偏差的含气膜冷却结构凹槽状叶顶的气热性能不确定性量化研究。结果表明冷气的注入将显著增强第一级动叶的下游流场的非稳定倾向。在燃气轮机的实际运行中,设计阶段预测能够被冷气充分覆盖的区域的气膜冷却有效度将大大低于确定性计算所得到的数值。在不确定性输入的影响下,凹槽状叶顶的气膜冷却有效度满足高斯分布,其统计平均值相比设计值减少了20.06%,偏离设计值10%的概率高达81.84%。敏感分析的结果表明影响下游总压损失系数波动的主导参数是叶顶间隙偏差,方差指数高达87.21%,而进口总温波动是影响气膜冷却有效度不确定性的核心参数,方差指数为84.01%。
黄明 , 张垲垣 , 李志刚 , 李军 . 涡轮动叶气膜冷却结构的凹槽状叶顶气热性能不确定性量化[J]. 航空学报, 2024 , 45(19) : 629979 -629979 . DOI: 10.7527/S1000-6893.2024.29979
This study proposes an efficient gas turbine blade aerothermal performance uncertainty system based on the genetic algorithm acceleration strategy, and develops a method for uncertainty data analysis of the blade tip aerothermal properties. The proposed system and method are utilized for the quantitative study of the uncertainty in the aerothermal performance of a squealer tip with film cooling structure, taking into account the operating condition fluctuation and geometrical parameter deviation. The results show that coolant jet injection will enhance the unsteady tendency of the downstream flow field of the first-stage rotor blades. In the actual operation of the gas turbine, the film cooling effectiveness in the region predicted at the design stage to be adequately covered by the coolant jet will be much lower than the value obtained from the deterministic calculations. Under the impact of the uncertainty inputs, the film cooling effectiveness of the squealer tip meets the Normal distribution. The mean value is reduced by 20.06% compared with the design value, and the probability of 10% deviation from the design value is as high as 81.84%. The result of sensitivity analysis shows that the main parameter affecting the fluctuation of the total downstream pressure loss coefficient is the tip clearance deviation, with the variance index as high as 87.21%. The total inlet temperature fluctuation is the key parameter affecting the uncertainty of the film cooling effectiveness, with the variance index of 84.01%.
1 | BUNKER R S. Axial turbine blade tips: Function, design, and durability[J]. Journal of Propulsion and Power, 2006, 22(2): 271-285. |
2 | KWAK J S, AHN J, HAN J C, et al. Heat transfer coefficients on the squealer tip and near-tip regions of a gas turbine blade with single or double squealer[J]. Journal of Turbomachinery, 2003, 125(4): 778-787. |
3 | ZHOU C, HODSON H. Squealer geometry effects on aerothermal performance of tip-leakage flow of cavity tips[J]. Journal of Propulsion and Power, 2012, 28(3): 556-567. |
4 | ZOU Z P, SHAO F, LI Y R, et al. Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance[J]. Energy, 2017, 138: 167-184. |
5 | 郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 027099. |
ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 027099 (in Chinese). | |
6 | 熊芬芬, 李泽贤, 刘宇, 等. 基于数值模拟的工程设计中参数不确定性表征方法研究综述[J]. 航空学报, 2023, 44(22): 228611. |
XIONG F F, LI Z X, LIU Y, et al. A review of characterization methods for parameter uncertainty in engineering design based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 228611 (in Chinese). | |
7 | 罗佳奇, 陈泽帅, 邹正平, 等. 低压涡轮铸造叶片几何不确定性统计[J]. 航空学报, 2023, 44(6): 427203. |
LUO J Q, CHEN Z S, ZOU Z P, et al. Statistics on geometric uncertainties of casting blades in low-pressure turbines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 427203 (in Chinese). | |
8 | 罗佳奇, 傅文豪, 曾先, 等. 雷诺数对高负荷低压涡轮叶栅流动损失的不确定性影响[J]. 航空学报, 2022, 43(7): 125427. |
LUO J Q, FU W H, ZENG X, et al. Uncertainty impact of Reynolds number on flow losses of high-lift low-pressure turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125427 (in Chinese). | |
9 | 王浩浩, 高丽敏, 杨光, 等. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 128169. |
WANG H H, GAO L M, YANG G, et al. Robust data-driven uncertainty quantification method and its application in compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128169 (in Chinese). | |
10 | BUNKER R S. The effects of manufacturing tolerances on gas turbine cooling[J]. Journal of Turbomachinery, 2009, 131(4): 1. |
11 | D’AMMARO A, MONTOMOLI F. Uncertainty quantification and film cooling[J]. Computers & Fluids, 2013, 71: 320-326. |
12 | MONTOMOLI F, MASSINI M, SALVADORI S. Geometrical uncertainty in turbomachinery: Tip gap and fillet radius[J]. Computers & Fluids, 2011, 46(1): 362-368. |
13 | PANIZZA A, BONINI A, INNOCENTI L. Uncertainty quantification of hot gas ingestion for a gas turbine nozzle using polynomial chaos[C]∥Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015. |
14 | 夏志恒, 罗佳奇. 涡轮叶片来流角扰动不确定性量化分析[J]. 航空动力学报, 2020, 35(3): 519-531. |
XIA Z H, LUO J Q. Uncertainty quantification of inlet incidence angle variation for turbine blade[J]. Journal of Aerospace Power, 2020, 35(3): 519-531 (in Chinese). | |
15 | DE MAESSCHALCK C, LACOR C, PANIAGUA G, et al. Performance robustness of turbine squealer tip designs due to manufacturing and engine operation[J]. Journal of Propulsion and Power, 2017, 33(3): 740-749. |
16 | 陈艺夫, 马宇航, 蓝庆生, 等. 基于多项式混沌法的翼型不确定性分析及梯度优化设计[J]. 航空学报, 2023, 44(8): 127446. |
CHEN Y F, MA Y H, LAN Q S, et al. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 127446 (in Chinese). | |
17 | 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报, 2020, 41(10): 123826. |
LUO J Q, CHEN Z S, ZENG X. Robust aerodynamic design optimization of turbine cascades considering uncertainty of geometric design parameters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123826 (in Chinese). | |
18 | MONTOMOLI F, MASSINI M. Uncertainty quantification applied to gas turbine components[M]∥Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines. Cham: Springer, 2019: 157-193. |
19 | BABAEE H, WAN X L, ACHARYA S. Effect of uncertainty in blowing ratio on film cooling effectiveness[J]. Journal of Heat Transfer, 2014, 136(3): 031701. |
20 | SHI W, CHEN P T, LI X Y, et al. Uncertainty quantification of the effects of squealer tip geometry deviation on aerothermal performance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(7): 1026-1038. |
21 | DINESCU C, SMIRNOV S, HIRSCH C, et al. Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions[J]. International Journal of Engineering Systems Modelling and Simulation, 2010, 2(1/2): 87. |
22 | DAUM F, HUANG J. Curse of dimensionality and particle filters[C]∥2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652). Piscataway: IEEE Press, 2003: 4_1979-4_1993. |
23 | KWAK J S, HAN J C. Heat-transfer coefficients of a turbine blade-tip and near-tip regions[J]. Journal of Thermophysics and Heat Transfer, 2003, 17(3): 297-303. |
24 | XIU D B, KARNIADAKIS G E. The wiener-askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. |
25 | GUTIéRREZ-AGUIRRE P, CONTRERAS-BOLTON C. A multioperator genetic algorithm for the traveling salesman problem with job-times[J]. Expert Systems with Applications, 2024, 240: 122472. |
26 | CHERRY D G, GAY C H, LENAHAN D T. Low pressure turbine test hardware detailed design report[M]. Washington, D.C.: NASA, 1982. |
27 | KWAK J S, HAN J C. Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade[J]. Journal of Turbomachinery, 2003, 125(4): 648-657. |
/
〈 |
|
〉 |