固体力学与飞行器总体设计

基于场变换的非高斯随机过程快速算法

  • 刘晋铭 ,
  • 谭星 ,
  • 陈卫婷 ,
  • 何欢
展开
  • 1.南京航空航天大学 航空航天结构力学及控制全国重点实验室,南京 210016
    2.南京航空航天大学 振动工程研究所,南京 210016
.E-mail: hehuan@nuaa.edu.cn

收稿日期: 2023-11-29

  修回日期: 2023-12-13

  录用日期: 2024-01-24

  网络出版日期: 2024-02-02

Fast algorithm for non-Gaussian stochastic processes based on translation processes

  • Jinming LIU ,
  • Xing TAN ,
  • Weiting CHEN ,
  • Huan HE
Expand
  • 1.State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.Institute of Vibration Engineering Research,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
E-mail: hehuan@nuaa.edu.cn

Received date: 2023-11-29

  Revised date: 2023-12-13

  Accepted date: 2024-01-24

  Online published: 2024-02-02

摘要

在非高斯平稳随机振动环境试验技术中,基于概率密度函数的试验技术更能精确地还原试验环境。但现有基于概率密度函数的随机信号仿真算法存在效率问题,难以在工程上应用。本文基于随机过程的场变换理论,提出了一种非高斯平稳随机过程仿真的快速算法。针对场变换理论中关键二重积分计算困难、计算速度慢的问题,对2个随机过程的相关系数函数进行级数展开,将一个含有隐式函数的复杂二重积分问题转换成一个简单的定积分问题,并利用Gauss-Hermite求积规则进行了快速求解。数值仿真验证了该方法能够在不影响仿真精度的前提下,提高非高斯平稳随机过程仿真的效率,满足了随机振动环境试验对于随机信号生成的实时性需求。

本文引用格式

刘晋铭 , 谭星 , 陈卫婷 , 何欢 . 基于场变换的非高斯随机过程快速算法[J]. 航空学报, 2024 , 45(18) : 229923 -229923 . DOI: 10.7527/S1000-6893.2024.29923

Abstract

In the non-Gaussian stationary random vibration environment testing technology, testing techniques based on probability density functions can more accurately reproduce the test environment. However, existing simulation algorithms based on probability density functions suffer from efficiency issues, making it challenging to apply them to engineering. A fast algorithm for simulating non-Gaussian stationary stochastic processes is proposed in this paper based on the translation process theory of stochastic processes. To address the difficulties and slow computation speed in critical double integral calculations of the field transformation theory, we expand the correlation coefficient functions of two random processes in series. This approach transforms a complicated double integral with an implicit function into a simple definite integral, which is efficiently solved using the Gauss-Hermite quadrature rule. Numerical simulations validate that this method can improve the efficiency of simulating non-Gaussian stationary random processes without compromising simulation accuracy, meeting the real-time requirement for generating random signals in the context of random vibration environment experiments.

参考文献

1 UNDERWOOD M A. Multi-exciter testing applications: theory and practice[C]∥Proceedings of the Institute of Environmental Sciences and Technology, 2002: 1-10.
2 VAES D, SOUVERIJNS W, DE CUYPER J, et al. Decoupling feedback control for improved multivariable vibration test rig tracking[J]. Proceedings of the 2002 International Conference on Noise and Vibration Engineering, ISMA, 2002: 525-534.
3 VAES D, SWEVERS J, SAS P. Experimental validation of different MIMO-feedback controller design methods[J]. Control Engineering Practice200513(11): 1439-1451.
4 STEINWOLF A. Random vibration testing with kurtosis control by IFFT phase manipulation[J]. Mechanical Systems and Signal Processing201228: 561-573.
5 ZHENG R H, CHEN H H, HE X D. Control method for multiple-input multiple-output non-gaussian random vibration test[J]. Packaging Technology and Science201730(7): 331-345.
6 STEINWOLF A. Approximation and simulation of probability distributions with a variable kurtosis value[J]. Computational Statistics & Data Analysis199621(2): 163-180.
7 陈家焱, 陈章位, 周建川, 等. 基于泊松过程的超高斯随机振动试验控制技术研究[J]. 振动与冲击201231(6): 19-22, 41.
  CHEN J Y, CHEN Z W, ZHOU J C, et al. Super-Gaussian random vibration test control technique based on Poisson process[J]. Journal of Vibration and Shock201231(6): 19-22, 41 (in Chinese).
8 吴家驹, 张鹏飞, 胡亚冰. 非高斯随机振动的分析基础[J]. 强度与环境201845(2): 1-8.
  WU J J, ZHANG P F, HU Y B. Analytical basis for the synthesis of non-Gaussian random vibration[J]. Structure & Environment Engineering201845(2): 1-8 (in Chinese).
9 夏静, 袁宏杰, 徐如远. 一种新的非高斯随机振动信号的模拟方法[J]. 北京航空航天大学学报201945(2): 366-372.
  XIA J, YUAN H J, XU R Y. A new simulation method of non-Gaussian random vibration signal[J]. Journal of Beijing University of Aeronautics and Astronautics201945(2): 366-372 (in Chinese).
10 朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击202039(16): 96-102, 134.
  ZHU D P. Time-dependent reliability analysis of package under non-Gaussian excitation[J]. Journal of Vibration and Shock202039(16): 96-102, 134 (in Chinese).
11 马益, 贺旭东, 陈怀海, 等. MIMO窄带加宽带非高斯随机振动试验[J]. 航空学报202344(8): 227475.
  MA Y, HE X D, CHEN H H, et al. Non-Gaussian random vibration testing of MIMO narrowband on broadband[J]. Acta Aeronautica et Astronautica Sinica202344(8): 227475 (in Chinese).
12 ZHENG R H, CHEN H H, HE X D, et al. Probability distributions control for multi-input multi-output stationary non-Gaussian random vibration test[J]. Journal of Vibration and Control2017: 107754631774750.
13 YAMAZAKI F, SHINOZUKA M. Digital generation of non-gaussian stochastic fields[J]. Journal of Engineering Mechanics1988114(7): 1183-1197.
14 DEODATIS G, MICALETTI R C. Simulation of highly skewed non-gaussian stochastic processes[J]. Journal of Engineering Mechanics2001127(12): 1284-1295.
15 SHI Y W, DEODATIS G, KOUTSOURELAKIS S. A novel approach for simulation of non-Gaussian fields: Application in estimating wire strengths from experimental data[J]. Safety and Reliability of Engineering Systems and Structures200524(6): 25-45.
16 BOCCHINI P, DEODATIS G. Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields[J]. Probabilistic Engineering Mechanics200823(4): 393-407.
17 SHIELDS M D, DEODATIS G, BOCCHINI P. A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process[J]. Probabilistic Engineering Mechanics201126(4): 511-519.
18 GRIGORIU M. Applied non-Gaussian processes[M]. New Jersey: Prentice Hall, 1995: 256-278.
19 GRIGORIU M. Crossings of non-gaussian translation processes[J]. Journal of Engineering Mechanics1984110(4): 610-620.
20 SHINOZUKA M, JAN C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration197225(1): 111-128.
21 KIBBLE W F. An extension of a theorem of Mehler’s on Hermite polynomials[J]. Mathematical Proceedings of the Cambridge Philosophical Society194541(1): 12-15.
22 ZHENG R H, CHEN G P, CHEN H H. Stationary non-Gaussian random vibration control: A review[J]. Chinese Journal of Aeronautics202134(1): 350-363.
23 ZHENG R H, CHEN G P, CHEN H H. Power spectrum and kurtosis separation method for multi-shaker non-Gaussian random vibration control[J]. Mechanical Systems and Signal Processing2022162: 108015.
文章导航

/