流体力学与飞行力学

超声速电磁发射近地多体分离气动干扰特性

  • 李少伟 ,
  • 宁昕 ,
  • 罗星东 ,
  • 侯自豪 ,
  • 薄靖龙
展开
  • 1.西北工业大学 航天学院,西安 710072
    2.中国航天科工飞航技术研究院 磁电总体部,北京 100074
.E-mail: tt198277@126.com

收稿日期: 2023-11-18

  修回日期: 2023-12-26

  录用日期: 2024-01-22

  网络出版日期: 2024-02-02

Aerodynamic interference characteristics of near⁃ground multibody separation by electromagnetic launch

  • Shaowei LI ,
  • Xin NING ,
  • Xingdong LUO ,
  • Zihao HOU ,
  • Jinglong BO
Expand
  • 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Institute of Magnetic Levitation and Electromagnetic Propulsion,China Aerospace Science & Industry Corporation,Beijing 100074,China
E-mail: tt198277@126.com

Received date: 2023-11-18

  Revised date: 2023-12-26

  Accepted date: 2024-01-22

  Online published: 2024-02-02

摘要

利用电磁助推将空天飞行器在地面加速至超声速发射,能够规避低速起飞阶段,对宽速域飞行提供了一种颇具潜力的解决方案。到达发射的目标速度,飞行器与电磁橇在近地面效应的干扰下能否实现安全分离是电磁发射的关键环节之一。针对近地超声速多体分离问题,采用非定常流动数值模拟方法对马赫数1.6状态下飞行器-电磁橇分离过程中的流动干扰情况进行了数值模拟。结果表明: 超声速近地分离过程可分为3阶段,依次是窄间隙壅塞流阶段、多体联动干扰阶段和独立地面效应干扰阶段,第1阶段以飞行器-电磁橇窄间隙内激波多重反射现象和局部壅塞效应为特征,第2阶段以飞行器与电磁橇快速联动下的干扰为特征,由双向干扰演变为飞行器对电磁橇单向干扰,在第3阶段飞行器与电磁橇均受独立的地面效应干扰。飞行器和电磁橇的气动载荷变化与分离流场所处阶段具有相关性。电磁橇前缘高压区由飞行器腹部掠过尾部导致飞行器气动阻力和升力陡然降低,力矩由低头力矩向抬头力矩转变剧烈。飞行器尾流膨胀区和尾激波相继扫掠电磁橇,导致其升力系数先增加至正升力后降低至负升力。整体上,飞行器飞离电磁橇的姿态较为平稳,两者在垂向和纵向上的间距持续增加。

本文引用格式

李少伟 , 宁昕 , 罗星东 , 侯自豪 , 薄靖龙 . 超声速电磁发射近地多体分离气动干扰特性[J]. 航空学报, 2024 , 45(18) : 129884 -129884 . DOI: 10.7527/S1000-6893.2024.29884

Abstract

Accelerating the aircraft to supersonic speed on the ground by using electromagnetic boosting can avoid the low-speed takeoff phase, and provides a potential solution for wide-speed-range flight. The Mach number 1.6 near-ground multibody free separation process is comprehensively investigated by numerical simulation. The results show that the evolution of supersonic near-ground separation can be divided into three stages, namely, choked flow in the narrow gap, interference induced by multi-body linkage, and independent ground effects. The first stage is featured by multiple reflections of shock waves and local choked flows in the gap between the aircraft and the electromagnetic sled. In the second stage, the flow evolution can be divided into two sub stages: bidirectional interference between the aircraft and the electromagnetic sled, and unidirectional interference from the aircraft to the electromagnetic sled. In the third stage, both the aircraft and the electromagnetic sled are subject to independent ground effects interference. Aerodynamic characteristics of the aircraft and the electromagnetic sled are strongly correlated with the separation stage. The high-pressure region at the leading edge of the electromagnetic sled sweeps past the rear of the aircraft, causing the aerodynamic drag and lift of the aircraft to decrease sharply and the moment to change dramatically from downward force moment to upward force moment. The expansion region and the shock wave in the wake of the aircraft subsequently sweep the electromagnetic sled, causing its lift to first increase to positive lift and then decrease to negative lift. Overall, the attitude of the aircraft flying away from the electromagnetic sled is relatively stable, and the distance between the two continues to increase in both vertical and longitudinal directions.

参考文献

1 贺翔, 曹群生. 电磁发射技术研究进展和关键技术[J]. 中国电子科学研究院学报20116(2): 130-135.
  HE X, CAO Q S. Development and critical techniques of electromagnetic launch technology[J]. Journal of China Academy of Electronics and Information Technology20116(2): 130-135 (in Chinese).
2 张明元, 马伟明, 汪光森, 等. 飞机电磁弹射系统发展综述[J]. 舰船科学技术201335(10): 1-5.
  ZHANG M Y, MA W M, WANG G S, et al. Overview on a significant technology of modern aircraft carrier-electromagnetic aircraft launch system[J]. Ship Science and Technology201335(10): 1-5 (in Chinese).
3 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术2022(4): 28-39, 86.
  XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide speed range aircraft[J]. Aerospace Technology2022(4): 28-39, 86 (in Chinese).
4 胡振娴, 张艳清, 尹军茂, 等. 空天飞行器磁悬浮电磁助推发射技术综述[J]. 飞航导弹2016(12): 54-59.
  HU Z X, ZHANG Y Q, YIN J M, et al. Overview of magnetic levitation electromagnetic booster launch technology for aerospace vehicles[J]. Aerodynamic Missile Journal2016(12): 54-59 (in Chinese).
5 罗世彬, 刘庆豪, 黄佳, 等. 电磁悬浮助推空天飞行器气动关键技术分析[J]. 飞行力学202038(5): 1-7.
  LUO S B, LIU Q H, HUANG J, et al. Analysis of key aerodynamic technologies of electromagnetic levitation assisted aerospace vehicle[J]. Flight Dynamics202038(5): 1-7 (in Chinese).
6 MORROW S R, ROOHANI H, SKEWS B W, et al. The aerodynamic performance of an aerofoil in tri-sonic ground effect[C]∥ Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019.
7 葛四维, 蒋崇文. 国外超声速地面效应研究进展[J]. 飞航导弹2018(2): 47-52.
  GE S W, JIANG C W. Research progress of supersonic ground effect abroad[J]. Aerodynamic Missile Journal2018(2): 47-52 (in Chinese).
8 DOIG G C, BARBER T J, LEONARDI E, et al. Methods for investigating supersonic ground effect in a blowdown wind tunnel[J]. Shock Waves200818(2): 155-159.
9 DOIG G. Transonic and supersonic ground effect aerodynamics[J]. Progress in Aerospace Sciences201469: 1-28.
10 DOIG G, WANG S B, KLEINE H, et al. Aerodynamic analysis of projectiles in ground effect at near-sonic Mach numbers[J]. AIAA Journal201654(1): 150-160.
11 BARBER T J, LEONARDI E, ARCHER R D. A technical note on the appropriate CFD boundary conditions for the prediction of ground effect aerodynamics[J]. The Aeronautical Journal1999103(1029): 545-547.
12 KLEINE H, YOUNG J, OAKES B, et al. Aerodynamic ground effect for transonic projectiles[C]∥28th International Symposium on Shock Waves. Berlin, Heidelberg: Springer, 2012: 519-524.
13 SHERIDAN C, YOUNG J, KLEINE H, et al. Ground effect of transonic and supersonic projectiles: Influence of Mach number and ground clearance[C]∥Proceedings of the 30th International Symposium on Shock Waves, 2017: 635-640.
14 PURDON J P, MUDFORD N R, KLEINE H. Supersonic projectiles in the vicinity of solid obstacles[C]∥ SPIE Proceedings 27th International Congress on High-Speed Photography and Photonics, 2007.
15 SUGAR-GABOR O. Numerical study of the circular cylinder in supersonic ground effect conditions[J]. International Review of Aerospace Engineering (IREASE)201811(1): 15.
16 GAO B S, QU Q L, AGARWAL R K. Aerodynamics of a transonic airfoil in ground effect[J]. Journal of Aircraft201855(6): 2240-2255.
17 陈晓东, 杨文将, 刘宇, 等. 磁悬浮助推发射气动力分析及风洞试验[J]. 航空动力学报200722(9): 1560-1564.
  CHEN X D, YANG W J, LIU Y, et al. Aerodynamic analysis and wind tunnel testing on maglev launch assist[J]. Journal of Aerospace Power200722(9): 1560-1564 (in Chinese).
18 肖虹, 高超, 孙良. 钝头体火箭撬试验地面效应影响的数值模拟[J]. 弹箭与制导学报201131(4): 102-104.
  XIAO H, GAO C, SUN L. The numerical simulation of ground effect in blunt rocket sled experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance201131(4): 102-104 (in Chinese).
19 YU Y Y, WANG B, XU C Y, et al. Aerodynamic characteristics of supersonic rocket-sled involving waverider geometry[J]. Applied Sciences202212(15): 7861.
20 GARDNER C S, LUDLOFF H F. Influence of acceleration on aerodynamic characteristics of thin airfoils in supersonic and transonic flight[J]. Journal of the Aeronautical Sciences195017(1): 47-59.
21 宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报202243(9): 025950.
  SONG W, AI B C. Multibody separation dynamics: Review[J]. Acta Aeronautica et Astronautica Sinica202243(9): 025950 (in Chinese).
22 王粤, 汪运鹏, 薛晓鹏, 等. TSTO马赫7安全级间分离问题的数值研究[J]. 力学学报202254(2): 526-542.
  WANG Y, WANG Y P, XUE X P, et al. Numerical investigation on safe stage separation problem of a TSTO model at Mach 7[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 526-542 (in Chinese).
23 王粤, 汪运鹏, 王春, 等. 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报202344(11): 127634.
  WANG Y, WANG Y P, WANG C, et al. Numerical study of longitudinal stage separation for parallel-staged two-stage-to-orbit vehicle[J]. Acta Aeronautica et Astronautica Sinica202344(11): 127634 (in Chinese).
24 王粤,汪运鹏,姜宗林 . 激波风洞 TSTO 纵向级间分离试验技术研究[J]. 航空学报202344(20): 128126.
  WANG Y, WANG Y P, Jiang Z L. Research on the test technology of longitudinal stage separation for TSTO in shock tunnel[J]. Acta Aeronauticaet Astronautica Sinica202344(20): 128126 (in Chinese).
25 DECKER J P. Aerodynamic interference effects caused by parallel-staged simple aerodynamic configurations at Mach numbers of 3 and 6: NASA-TN-D-5379[R]. Washington, D.C.: NASA, 1969.
26 CVRLJE T, BREITSAMTER C, LASCHKA B. Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions[J]. Aerospace Science and Technology20004(3): 157-171.
27 TIAN S L, FU J W, CHEN J T. A numerical method for multi-body separation with collisions[J]. Aerospace Science and Technology2021109: 106426.
28 HEIM R R. CFD wing/ pylon/ finned store mutual interference wind tunnel experiment[R]. AEDC-TSR-91-P4, 1991.
29 HELLMAN B M, BRADFORD J E, GERMAIN B D ST, et al. Two stage to orbit conceptual vehicle designs using the SABRE Engine[C]∥ Proceedings of the AIAA SPACE 2016. Reston: AIAA, 2016.
文章导航

/