空地无人集群自调节控制与动态路径规划方法
收稿日期: 2023-11-01
修回日期: 2023-11-27
录用日期: 2024-01-21
网络出版日期: 2024-02-02
基金资助
中央高校基本科研业务费专项资金
Self⁃adaptive formation control and dynamic path planning for air⁃ground heterogeneous swarm
Received date: 2023-11-01
Revised date: 2023-11-27
Accepted date: 2024-01-21
Online published: 2024-02-02
Supported by
Fundamental Research Funds for the Central Universities of China
针对异构感知条件下空地无人集群协同避障与导航问题,提出了集群队形自调节控制与动态路径规划方法。首先,建立了无人机(UAV)与地面机器人的运动、感知与通信模型,设计了空地无人集群协调运动控制架构,满足异构集群协同避障与导航的控制目标。其次,提出了机器人集群队形边界动态生成方法,分别设计了形状控制、个体避碰、编队控制与导航控制分量,实现了基于动态边界的集群队形自调节控制。结合机器人动态队形边界特性,提出了基于动态窗口优化的无人机路径规划方法,通过设计优化目标函数在集群协同运动的基础上实现了安全导航避撞。最后,设计了队形边界缩放、变形和旋转下的队形调节场景与狭窄廊道协同避障与导航任务想定,通过仿真算例验证了空地无人集群队形自调节控制与动态路径规划方法的有效性,并给出了所述方法能力边界的分析。
赵江 , 张璇 , 池沛 , 王英勋 . 空地无人集群自调节控制与动态路径规划方法[J]. 航空学报, 2024 , 45(16) : 329809 -329809 . DOI: 10.7527/S1000-6893.2024.29809
To deal with the collective obstacle avoidance and navigation problem of air-ground unmanned swarm with heterogeneous detection abilities, a self-adaptive formation control and dynamic path planning method is proposed in this paper. Firstly, the mathematical model of Unmanned Aerial Vehicle (UAV) and ground robots describing motion, detection and communication is established respectively. And the control architecture is designed to satisfy the target of collective obstacle avoidance and navigation of the heterogeneous swarm. Secondly, this paper proposes the dynamic formation boundary generation method for ground robot swarm and designs shape control, inter-agent collision avoidance, formation and navigation control component separately to achieve self-adaptive formation control. Furthermore, a path planning method for UAV based on dynamic window approach is proposed in view of the characteristics of dynamic formation boundary. The safety of collective navigation and obstacle avoidance is guaranteed on the basis of self-adaptive formation control by designing optimization function. Finally, the paper designs the scene of formation adaption including scaling, deformation and rotation and task situation of collective obstacle avoidance and navigation through narrow corridors. The effectiveness of the proposed self-adaptive formation control and dynamic path planning for air-ground unmanned swarm is validated through simulation, and the applicable boundary of the proposed method is further analyzed.
1 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. |
JIA Y N, TIAN S Y, LI Q. Review on research progress of UAV cluster[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). | |
2 | CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4): 837-855. |
3 | 牛轶峰, 刘俊艺, 熊进, 等. 无人机群协同跟踪地面多目标导引方法研究[J]. 中国科学: 技术科学, 2020, 50(4): 403-422. |
NIU Y F, LIU J Y, XIONG J, et al. Research on guidance method of cooperative tracking ground multi-target using UAV group[J]. Scientia Sinica (Technologica), 2020, 50(4): 403-422 (in Chinese). | |
4 | 刘云昊, 邓亦敏, 段海滨, 等. 基于飞蛾信息素寻偶机制的无人机集群协同搜索[J]. 国防科技大学学报, 2022, 44(4): 22-31. |
LIU Y H, DENG Y M, DUAN H B, et al. Unmanned aerial vehicle swarm cooperative search based on moth pheromone courtship mechanism[J]. Journal of National University of Defense Technology, 2022, 44(4): 22-31 (in Chinese). | |
5 | 王孟阳, 张栋, 唐硕, 等. 基于动态联盟策略的无人机集群在线任务规划方法[J]. 兵工学报, 2023, 44(8): 2207-2223. |
WANG M Y, ZHANG D, TANG S, et al. UAV swarm on-line mission planning method based on dynamic allocation strategy[J]. Acta Armamentarii, 2023, 44(8): 2207-2223 (in Chinese). | |
6 | RIZK Y, AWAD M, TUNSTEL E W. Cooperative heterogeneous multi-robot systems: A survey[J]. ACM Computing Surveys, 52(2): 29. |
7 | 李明龙, 杨文婧, 易晓东, 等. 面向灾难搜索救援场景的空地协同无人群体任务规划研究[J]. 机械工程学报, 2019, 55(11): 1-9. |
LI M L, YANG W J, YI X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue[J]. Journal of Mechanical Engineering, 2019, 55(11): 1-9 (in Chinese). | |
8 | DING Y L, XIN B, CHEN J. A review of recent advances in coordination between unmanned aerial and ground vehicles[J]. Unmanned Systems, 2021, 9(2): 97-117. |
9 | CHEN J, ZHANG X, XIN B, et al. Coordination between unmanned aerial and ground vehicles: A taxonomy and optimization perspective[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 959-972. |
10 | RAHIMI R, ABDOLLAHI F, NAQSHI K. Time-varying formation control of a collaborative heterogeneous multi agent system[J]. Robotics and Autonomous Systems, 2014, 62(12): 1799-1805. |
11 | 魏志强, 翁哲鸣, 化永朝, 等. 切换拓扑下异构无人集群编队-合围跟踪控制[J]. 航空学报, 2023, 44(2): 326504. |
WEI Z Q, WENG Z M, HUA Y Z, et al. Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 326504 (in Chinese). | |
12 | 周思全, 董希旺, 李清东, 等. 无人机-无人车异构时变编队控制与扰动抑制[J]. 航空学报, 2020, 41(S1): 723767. |
ZHOU S Q, DONG X W, LI Q D, et al. UAV-UAV heterogeneous time-varying formation control and disturbance suppression[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723767 (in Chinese). | |
13 | ARANDA M, LóPEZ-NICOLáS G, SAGüéS C, et al. Formation control of mobile robots using multiple aerial cameras[J]. IEEE Transactions on Robotics, 2015, 31(4): 1064-1071. |
14 | ARANDA M, MEZOUAR Y, LóPEZ-NICOLáS G, et al. Scale-free vision-based aerial control of a ground formation with hybrid topology[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1703-1711. |
15 | REN Y, ZHANG K, JIANG B, et al. Distributed fault-tolerant time-varying formation control of heterogeneous multi-agent systems[J]. International Journal of Robust and Nonlinear Control, 2022, 32(5): 2864-2882. |
16 | 马亚杰, 王娟, 姜斌, 等. 一种无人机-无人车编队系统容错控制方法[J]. 航空学报, 2023, 44(8): 327216. |
MA Y J, WANG J, JIANG B, et al. A fault-tolerant control scheme for UAVs-UGVs formation systems[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327216 (in Chinese). | |
17 | SASKA M, VONáSEK V, KRAJNíK T, et al. Coordination and navigation of heterogeneous MAV–UGV formations localized by a ‘hawk-eye’-like approach under a model predictive control scheme[J]. The International Journal of Robotics Research, 2014, 33(10): 1393-1412. |
18 | WANG W, GUO J Y, TIAN G Q, et al. Event-triggered intervention framework for UAV-UGV coordination systems[J]. Machines, 2021, 9(12): 371. |
19 | NIU G C, WU L, GAO Y F, et al. Unmanned aerial vehicle (UAV)-assisted path planning for unmanned ground vehicles (UGVs) via disciplined convex-concave programming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 6996-7007. |
20 | LONG N K, SAMMUT K, SGARIOTO D, et al. A comprehensive review of shepherding as a bio-inspired swarm-robotics guidance approach[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(4): 523-537. |
21 | STR?MBOM D, MANN R P, WILSON A M, et al. Solving the shepherding problem: Heuristics for herding autonomous, interacting agents[J]. Journal of the Royal Society, Interface, 2014, 11(100): 20140719. |
22 | NGUYEN H T, NGUYEN T D, GARRATT M, et al. A deep hierarchical reinforcement learner for aerial shepherding of ground swarms[C]∥ International Conference on Neural Information Processing. Cham: Springer, 2019: 658-669. |
23 | 梁晓龙, 孙强, 尹忠海, 等. 大规模无人系统集群智能控制方法综述[J]. 计算机应用研究, 2015, 32(1): 11-16. |
LIANG X L, SUN Q, YIN Z H, et al. Review on large-scale unmanned system swarm intelligence control method[J]. Application Research of Computers, 2015, 32(1): 11-16 (in Chinese). | |
24 | OLFATI-SABER R. Flocking for multi-agent dynamic systems: algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420. |
25 | FANG W X, ZHAO J B, PAN Y C. Combined flocking and region-based shape control for multi-agent systems[C]∥ 2019 IEEE 58th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2019: 3557-3562. |
26 | ZHAO H T, LIU H, LEUNG Y W, et al. Self-adaptive collective motion of swarm robots[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(4): 1533-1545. |
27 | HU J Y, TURGUT A E, KRAJNíK T, et al. Occlusion-based coordination protocol design for autonomous robotic shepherding tasks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(1): 126-135. |
/
〈 |
|
〉 |