基于横截函数的欠驱动航天器姿态跟踪方法
收稿日期: 2023-04-21
修回日期: 2023-06-16
录用日期: 2023-07-27
网络出版日期: 2023-08-14
基金资助
国家自然科学基金(62227812);天目山实验室科研项目(TK-2023-B-010)
Attitude tracking of underactuated spacecraft based on transverse function
Received date: 2023-04-21
Revised date: 2023-06-16
Accepted date: 2023-07-27
Online published: 2023-08-14
Supported by
National Natural Science Foundation of China(62227812);Tianmushan Laboratory Research Project(TK-2023-B-010)
针对航天器姿态跟踪任务,考虑一种配置2个独立动量交换型执行机构的欠驱动航天器,提出了一种基于横截函数的任意姿态轨迹跟踪控制律。利用三维特殊正交群
段超 , 邵小东 , 胡庆雷 , 吴淮宁 . 基于横截函数的欠驱动航天器姿态跟踪方法[J]. 航空学报, 2024 , 45(1) : 628910 -628910 . DOI: 10.7527/S1000-6893.2024.28910
The attitude tracking of an underactuated spacecraft with two independent actuators of the momentum exchange type is considered, and an arbitrary attitude trajectory tracking control law is proposed based on the transverse function. The kinematic equations of the rigid spacecraft attitude are established using the three-dimensional special orthogonal group
1 | TAFAZOLI M. A study of on-orbit spacecraft failures[J]. Acta Astronautica, 2009, 64(2-3): 195-205. |
2 | UO M, SHIRAKAWA K, HASHIMOTO T, et al. Attitude control challenges and solutions for hayabusa spacecraft[C]∥ Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2006. |
3 | CROUCH P. Spacecraft attitude control and stabilization: applications of geometric control theory to rigid body models[J]. IEEE Transactions on Automatic Control, 1984, 29(4): 321-331. |
4 | KRISHNAN H, REYHANOGLU M, MCCLAMROCH H. Attitude stabilization of a rigid spacecraft using two control torques: a nonlinear control approach based on the spacecraft attitude dynamics[J]. Automatica, 1994, 30(6): 1023-1027. |
5 | BROCKETT R W. Asymptotic stability and feedback stabilization[J]. Differential Geometric Control Theory, 1983: 181-191. |
6 | HORRI N M, PALMER P. Practical implementation of attitude-control algorithms for an underactuated satellite[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 40-45. |
7 | TSIOTRAS P, LUO J H. Control of underactuated spacecraft with bounded inputs[J]. Automatica, 2000, 36(8): 1153-1169. |
8 | MORIN P, SAMSON C. Time-varying exponential stabilization of a rigid spacecraft with two control torques[J]. IEEE Transactions on Automatic Control, 1997, 42(4): 528-534. |
9 | GUI H C, VUKOVICH G. Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques[J]. Advances in Space Research, 2015, 56(11): 2495-2507. |
10 | GODARD, KUMAR K D. Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 969-984. |
11 | 崔祜涛, 程小军. 考虑输入饱和的两飞轮驱动航天器视线轴控制[J]. 航空学报, 2013, 34(3): 644-654. |
CUI H T, CHENG X J. Line-of-sight pointing control of spacecraft actuated by two flywheels considering input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 644-654 (in Chinese). | |
12 | BEHAL A, DAWSON D, ZERGEROGLU E, et al. Nonlinear tracking control of an underactuated spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(5): 979-985. |
13 | 郭延宁, 宋斌, 马广富. 基于势函数法的双飞轮航天器姿态机动控制[C]∥第三十二届中国控制会议论文集(D卷). 北京: 中国自动化学会控制理论专业委员会, 2013: 5132-5137. |
GUO Y N, SONG B, MA G F. Attitude maneuver control of two-flywheel spacecraft using potential function method[C]∥Proceedings of the 32nd Chinese Control Conference, Technical Committee on Control Theory (Volume D). Beijing: Chinese Association of Automation, 2013: 5132-5137 (in Chinese). | |
14 | LI H P, YAN W S, SHI Y. Continuous-time model predictive control of under-actuated spacecraft with bounded control torques[J]. Automatica, 2017, 75: 144-153. |
15 | PETERSEN C D, LEVE F, KOLMANOVSKY I. Model predictive control of an underactuated spacecraft with two reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 320-332. |
16 | MORIN P, SAMSON C. Practical stabilization of driftless systems on Lie groups: the transverse function approach[J]. IEEE Transactions on Automatic Control, 2003, 48(9): 1496-1508. |
17 | LEE U, MESBAHI M. Feedback control for spacecraft reorientation under attitude constraints via convex potentials[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2578-2592. |
18 | LEE D, SANYAL A K, BUTCHER E A. Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 587-600. |
19 | LEE D, VUKOVICH G. Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking[J]. Nonlinear Dynamics, 2016, 83(4): 2263-2279. |
20 | LEE T. Geometric tracking control of the attitude dynamics of a rigid body on SO(3)[C]∥ Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 1200-1205. |
21 | BIGGS J D, BAI Y L, HENNINGER H. Attitude guidance and tracking for spacecraft with two reaction wheels[J]. International Journal of Control, 2018, 91(4): 926-936. |
22 | BIGGS J D, HENNINGER H C. Motion planning on a class of 6-D lie groups via a covering map[J]. IEEE Transactions on Automatic Control, 2019, 64(9): 3544-3554. |
23 | MORIN P, SAMSON C. Control of nonholonomic mobile robots based on the transverse function approach[J]. IEEE Transactions on Robotics, 2009, 25(5): 1058-1073. |
24 | MORIN P, SAMSON C. Control with transverse functions and a single generator of underactuated mechanical systems[C]∥ Proceedings of the 45th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2007: 6110-6115. |
25 | GUI H C, VUKOVICH G, XU S J. Attitude tracking of a rigid spacecraft using two internal torques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2900-2913. |
26 | BULLO F, LEWIS A D. Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems[M]. New York: Springer, 2005. |
27 | GUI H C, JIN L, XU S J. Attitude maneuver control of a two-wheeled spacecraft with bounded wheel speeds[J]. Acta Astronautica, 2013, 88: 98-107. |
28 | SLOTINE J J E, LI W P. Applied nonlinear control[M]. Englewood Cliffs: Prentice Hall, 1991. |
/
〈 |
|
〉 |