全驱系统理论及其在航空航天领域的应用专栏

基于横截函数的欠驱动航天器姿态跟踪方法

  • 段超 ,
  • 邵小东 ,
  • 胡庆雷 ,
  • 吴淮宁
展开
  • 1.北京航空航天大学 自动化科学与电气工程学院,北京  100191
    2.北京航空航天大学 航空科学与工程学院,北京  100191
    3.天目山实验室,杭州  310023
.E-mail: huql_buaa@buaa.edu.cn

收稿日期: 2023-04-21

  修回日期: 2023-06-16

  录用日期: 2023-07-27

  网络出版日期: 2023-08-14

基金资助

国家自然科学基金(62227812);天目山实验室科研项目(TK-2023-B-010)

Attitude tracking of underactuated spacecraft based on transverse function

  • Chao DUAN ,
  • Xiaodong SHAO ,
  • Qinglei HU ,
  • Huaining WU
Expand
  • 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing  100191,China
    2.School of Aeronautic Science and Engineering,Beihang University,Beijing  100191,China
    3.Tianmushan Laboratory,Hangzhou  310023,China

Received date: 2023-04-21

  Revised date: 2023-06-16

  Accepted date: 2023-07-27

  Online published: 2023-08-14

Supported by

National Natural Science Foundation of China(62227812);Tianmushan Laboratory Research Project(TK-2023-B-010)

摘要

针对航天器姿态跟踪任务,考虑一种配置2个独立动量交换型执行机构的欠驱动航天器,提出了一种基于横截函数的任意姿态轨迹跟踪控制律。利用三维特殊正交群SO(3)建立航天器姿态运动学方程,并基于动量守恒条件,将动力学方程与运动学统一写成以执行机构输出角动量为控制输入的降阶系统。利用横截条件与 Lie 代数秩条件构造基于SO(3)的横截函数,其本质为能够任意逼近平衡点的一个嵌入子流形,并基于横截函数与姿态误差建立降阶跟踪控制系统的伴随系统。针对伴随系统,提出了一种光滑静态反馈控制律,利用 Morse 函数证明了对于任意轨迹闭环系统的最终有界稳定性。进一步针对可行轨迹,基于零动态系统设计了横截函数的参数自调整律,使得在零动态时横截函数趋近跟踪系统的平衡点,证明了闭环系统具有指数稳定性。最后,通过数值仿真验证了提出控制器的有效性。

本文引用格式

段超 , 邵小东 , 胡庆雷 , 吴淮宁 . 基于横截函数的欠驱动航天器姿态跟踪方法[J]. 航空学报, 2024 , 45(1) : 628910 -628910 . DOI: 10.7527/S1000-6893.2024.28910

Abstract

The attitude tracking of an underactuated spacecraft with two independent actuators of the momentum exchange type is considered, and an arbitrary attitude trajectory tracking control law is proposed based on the transverse function. The kinematic equations of the rigid spacecraft attitude are established using the three-dimensional special orthogonal group SO(3). Based on the momentum conservation condition, the kinematic equations are unified with the kinematics as a reduced-order system with the output angular momentum of the actuator as the control input. The transverse condition is used to construct the transverse function based on the Lie algebraic rank condition, which is essentially an embedded submanifold that can approach the equilibrium point arbitrarily. The adjoint system of the reduced-order tracking control system is established based on the transverse function and the attitude error. For the accompanying system, a smooth static feedback control law is proposed, and the ultimately bounded stability of the closed-loop system for arbitrary trajectories is proved by using the Morse function. Furthermore, for the feasible trajectory, the parameter adjustment law of the transverse function is designed based on the zero dynamic system, so that the transverse function converges to the equilibrium point of the tracking system at zero dynamic, and the closed-loop system is proved to have exponential stability. Finally, the effectiveness of the proposed controller is verified by numerical simulation.

参考文献

1 TAFAZOLI M. A study of on-orbit spacecraft failures[J]. Acta Astronautica200964(2-3): 195-205.
2 UO M, SHIRAKAWA K, HASHIMOTO T, et al. Attitude control challenges and solutions for hayabusa spacecraft[C]∥ Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2006.
3 CROUCH P. Spacecraft attitude control and stabilization: applications of geometric control theory to rigid body models[J]. IEEE Transactions on Automatic Control198429(4): 321-331.
4 KRISHNAN H, REYHANOGLU M, MCCLAMROCH H. Attitude stabilization of a rigid spacecraft using two control torques: a nonlinear control approach based on the spacecraft attitude dynamics[J]. Automatica199430(6): 1023-1027.
5 BROCKETT R W. Asymptotic stability and feedback stabilization[J]. Differential Geometric Control Theory1983: 181-191.
6 HORRI N M, PALMER P. Practical implementation of attitude-control algorithms for an underactuated satellite[J]. Journal of Guidance, Control, and Dynamics201235(1): 40-45.
7 TSIOTRAS P, LUO J H. Control of underactuated spacecraft with bounded inputs[J]. Automatica200036(8): 1153-1169.
8 MORIN P, SAMSON C. Time-varying exponential stabilization of a rigid spacecraft with two control torques[J]. IEEE Transactions on Automatic Control199742(4): 528-534.
9 GUI H C, VUKOVICH G. Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques[J]. Advances in Space Research201556(11): 2495-2507.
10 GODARD, KUMAR K D. Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques[J]. Journal of Guidance, Control, and Dynamics201033(3): 969-984.
11 崔祜涛, 程小军. 考虑输入饱和的两飞轮驱动航天器视线轴控制[J]. 航空学报201334(3): 644-654.
  CUI H T, CHENG X J. Line-of-sight pointing control of spacecraft actuated by two flywheels considering input saturation[J]. Acta Aeronautica et Astronautica Sinica201334(3): 644-654 (in Chinese).
12 BEHAL A, DAWSON D, ZERGEROGLU E, et al. Nonlinear tracking control of an underactuated spacecraft[J]. Journal of Guidance, Control, and Dynamics200225(5): 979-985.
13 郭延宁, 宋斌, 马广富. 基于势函数法的双飞轮航天器姿态机动控制[C]∥第三十二届中国控制会议论文集(D卷). 北京: 中国自动化学会控制理论专业委员会, 2013: 5132-5137.
  GUO Y N, SONG B, MA G F. Attitude maneuver control of two-flywheel spacecraft using potential function method[C]∥Proceedings of the 32nd Chinese Control Conference, Technical Committee on Control Theory (Volume D). Beijing: Chinese Association of Automation, 2013: 5132-5137 (in Chinese).
14 LI H P, YAN W S, SHI Y. Continuous-time model predictive control of under-actuated spacecraft with bounded control torques[J]. Automatica201775: 144-153.
15 PETERSEN C D, LEVE F, KOLMANOVSKY I. Model predictive control of an underactuated spacecraft with two reaction wheels[J]. Journal of Guidance, Control, and Dynamics201740(2): 320-332.
16 MORIN P, SAMSON C. Practical stabilization of driftless systems on Lie groups: the transverse function approach[J]. IEEE Transactions on Automatic Control200348(9): 1496-1508.
17 LEE U, MESBAHI M. Feedback control for spacecraft reorientation under attitude constraints via convex potentials[J]. IEEE Transactions on Aerospace and Electronic Systems201450(4): 2578-2592.
18 LEE D, SANYAL A K, BUTCHER E A. Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance[J]. Journal of Guidance, Control, and Dynamics201538(4): 587-600.
19 LEE D, VUKOVICH G. Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking[J]. Nonlinear Dynamics201683(4): 2263-2279.
20 LEE T. Geometric tracking control of the attitude dynamics of a rigid body on SO(3)[C]∥ Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 1200-1205.
21 BIGGS J D, BAI Y L, HENNINGER H. Attitude guidance and tracking for spacecraft with two reaction wheels[J]. International Journal of Control201891(4): 926-936.
22 BIGGS J D, HENNINGER H C. Motion planning on a class of 6-D lie groups via a covering map[J]. IEEE Transactions on Automatic Control201964(9): 3544-3554.
23 MORIN P, SAMSON C. Control of nonholonomic mobile robots based on the transverse function approach[J]. IEEE Transactions on Robotics200925(5): 1058-1073.
24 MORIN P, SAMSON C. Control with transverse functions and a single generator of underactuated mechanical systems[C]∥ Proceedings of the 45th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2007: 6110-6115.
25 GUI H C, VUKOVICH G, XU S J. Attitude tracking of a rigid spacecraft using two internal torques[J]. IEEE Transactions on Aerospace and Electronic Systems201551(4): 2900-2913.
26 BULLO F, LEWIS A D. Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems[M]. New York: Springer, 2005.
27 GUI H C, JIN L, XU S J. Attitude maneuver control of a two-wheeled spacecraft with bounded wheel speeds[J]. Acta Astronautica201388: 98-107.
28 SLOTINE J J E, LI W P. Applied nonlinear control[M]. Englewood Cliffs: Prentice Hall, 1991.
文章导航

/