全驱系统理论及其在航空航天领域的应用专栏

编队航天器协同绕飞非合作目标的全驱预设性能控制

  • 殷泽阳 ,
  • 邢友朋 ,
  • 韩飞 ,
  • 魏才盛 ,
  • 廖宇新
展开
  • 1.中南大学 自动化学院,长沙  410083
    2.上海航天控制技术研究所,上海  201109

收稿日期: 2023-04-21

  修回日期: 2023-05-15

  录用日期: 2023-06-28

  网络出版日期: 2023-07-07

基金资助

国家自然科学基金(62103446);湖南省自然科学基金(2022JJ20081);飞行动力学技术重点实验室基金(KJW6142210210306);中南大学创新驱动计划项目(2023CXQD066)

Fully-actuated prescribed performance control of spacecraft formation for flying cooperatively around non-cooperative target

  • Zeyang YIN ,
  • Youpeng XING ,
  • Fei HAN ,
  • Caisheng WEI ,
  • Yuxin LIAO
Expand
  • 1.School of Automation,Central South University,Changsha  410083,China
    2.Shanghai Aerospace Control Technology Institute,Shanghai  201109,China

Received date: 2023-04-21

  Revised date: 2023-05-15

  Accepted date: 2023-06-28

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(62103446);Fund of Hunan Provincial Natural Science(2022JJ20081);Funding of Science and Technology on Aerospace Flight Dynamics Laboratory(KJW6142210210306);Central South University Innovation-Driven Research Program(2023CXQD066)

摘要

针对利用多星编队协同绕飞空间非合作目标的控制问题,考虑外部干扰和目标非期望轨道机动影响,提出了一种基于全驱系统理论的分布式约定时间预设性能控制方法。首先,基于视线坐标系建立服务航天器编队绕飞非合作目标的相对运动方程,并将其转化为全驱系统形式以降低控制器设计复杂度;其次,结合拓扑理论设计一种分布式约定时间预设性能控制器,保证多星编队绕飞的瞬态和稳态控制性能;此外,引入扩张状态观测器观测并合理补偿系统中存在的不确定项与干扰,提高多星编队绕飞的控制精度与鲁棒性。最后,通过两组绕飞仿真验证了所设计控制方法的有效性。

本文引用格式

殷泽阳 , 邢友朋 , 韩飞 , 魏才盛 , 廖宇新 . 编队航天器协同绕飞非合作目标的全驱预设性能控制[J]. 航空学报, 2024 , 45(1) : 628904 -628904 . DOI: 10.7527/S1000-6893.2024.28904

Abstract

To address the cooperative control problem of using spacecraft formation for approaching and flying around the non-cooperative target, a distributed prescribed performance control method based on the fully-actuated system theory is proposed in consideration of external interference and unexpected orbital maneuvers. First, a relative dynamic model for the service spacecraft formation and the non-cooperative target is established based on the line-of-sight coordinate system, and the fully-actuated control law is constructed to reduce the complexity of controller design. Furthermore, a distributed agreed-time prescribed performance controller is designed using the topology theory to ensure the control performance of the spacecraft formation around the target. In addition, an extended state observer is employed to observe and compensate for the uncertainties and disturbances in the system, thereby improving the control precision and robustness in spacecraft formation flying around the target. Finally, the effectiveness of the designed control method is verified by two sets of flying around simulations.

参考文献

1 胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报202243(10): 527351.
  HU Q L, SHAO X D, YANG H Y, et al. Spacecraft attitude planning and control under multiple constraints: review and prospects[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527351 (in Chinese).
2 LI Y X, HUO J, MA P, et al. Target localization method of non-cooperative spacecraft on on-orbit service[J]. Chinese Journal of Aeronautics202235(11): 336-348.
3 HUANG Y, JIA Y M. Adaptive fixed-time relative position tracking and attitude synchronization control for non-cooperative target spacecraft fly-around mission[J]. Journal of the Franklin Institute2017354(18): 8461-8489.
4 黄宇嵩, 田栋, 李洪珏, 等. 一种翻滚非合作航天器抵近绕飞避障轨迹规划和跟踪控制方法[J]. 空间控制技术与应用202147(3): 1-8.
  HUANG Y S, TIAN D, LI H J, et al. A trajectory planning and tracking algorithm for the tumbling non-cooperative spacecraft approach, flying-around and obstacle avoidance[J]. Aerospace Control and Application202147(3): 1-8 (in Chinese).
5 WANG Y, JI H B. Input-to-state stability-based adaptive control for spacecraft fly-around with input saturation[J]. IET Control Theory & Applications202014(10): 1365-1374.
6 徐影, 张进, 于沫尧, 等. 多星近距离绕飞观测任务姿轨耦合控制研究[J]. 中国空间科学技术201939(6): 21-29.
  XU Y, ZHANG J, YU M Y, et al. Attitude and orbit coupling control for fly-around observation of multi-satellite proximity operation[J]. Chinese Space Science and Technology201939(6): 21-29 (in Chinese).
7 BAI S Z, HAN C, RAO Y R, et al. New fly-around formations for an elliptical reference orbit[J]. Acta Astronautica2020171: 335-351.
8 常燕, 陈韵, 鲜勇, 等. 椭圆轨道上目标监测绕飞轨道构型设计与构型保持[J]. 系统工程与电子技术201739(6): 1317-1324.
  CHANG Y, CHEN Y, XIAN Y, et al. Configuration design and maintenance of flyaround trajectory for target monitoring in elliptical orbit[J]. Systems Engineering and Electronics201739(6): 1317-1324 (in Chinese).
9 ZHANG R, HAN C, RAO Y R, et al. Spacecraft fast fly-around formations design using the Bi-teardrop configuration[J]. Journal of Guidance, Control, and Dynamics201841(7): 1542-1555.
10 HUANG Y, JIA Y M. Distributed finite-time output feedback synchronisation control for six DOF spacecraft formation subject to input saturation[J]. IET Control Theory & Applications201812(4): 532-542.
11 ZHOU N, XIA Y Q, FU M, et al. Distributed cooperative control design for finite-time attitude synchronisation of rigid spacecraft[J]. IET Control Theory and Applications20159: 1561-1570.
12 李学辉, 宋申民. 慢旋非合作目标快速绕飞避碰控制[J]. 控制与决策201833(9): 1612-1618.
  LI X H, SONG S M. Slowly rotating non-cooperative target fast fly-around collision avoidance control[J]. Control and Decision201833(9): 1612-1618 (in Chinese).
13 SUN G J, ZHOU M Q, JIANG X Q. Non-cooperative spacecraft proximity control considering target behavior uncertainty[J]. Astrodynamics20226(4): 399-411.
14 HAN D, LIU Z X, HUANG P F. Capture and detumble of a non-cooperative target without a specific gripping point by a dual-arm space robot[J]. Advances in Space Research202269(10): 3770-3784.
15 黄艺, 贾英民. 非合作目标绕飞任务的航天器鲁棒姿轨耦合控制[J]. 控制理论与应用201835(10): 1405-1414.
  HUANG Y, JIA Y M. Robust relative position and attitude control for non-cooperative fly-around mission[J]. Control Theory & Applications201835(10): 1405-1414 (in Chinese).
16 DONG F F, JIN D, ZHAO X M, et al. A non-cooperative game approach to the robust control design for a class of fuzzy dynamical systems[J]. ISA Transactions2022125: 119-133.
17 DUAN G R. High-order fully actuated system approaches: part I. models and basic procedure[J]. International Journal of Systems Science202152(2): 422-435.
18 DUAN G R. High-order fully actuated system approaches: part II. generalized strict-feedback systems[J]. International Journal of Systems Science202152(3): 437-454.
19 ZHOU B, DUAN G R. On the role of zeros in the pole assignment of scalar high-order fully actuated linear systems[J]. Journal of Systems Science and Complexity202235(2): 535-542.
20 DUAN G Q, LIU G P. Attitude and orbit optimal control of combined spacecraft via a fully-actuated system approach[J]. Journal of Systems Science and Complexity202235(2): 623-640.
21 XIAO F Z, CHEN L Q. Fully actuated systems in terms of quaternions for spacecraft attitude control[J]. Acta Astronautica2023209: 1-5.
22 XIAO F Z, CHEN L Q. Attitude control of spherical liquid-filled spacecraft based on high-order fully actuated system approaches[J]. Journal of Systems Science and Complexity202235(2): 471-480.
23 潘汉, 曹姝清, 武海雷, 等. 基于截断最小二乘和半正定规划的空间非合作目标相对位姿估计[J]. 飞控与探测20225(4): 50-56.
  PAN H, CAO S Q, WU H L, et al. Non-cooperative space target relative pose estimation via truncated least squares and semi-definite programming[J]. Flight Control & Detection20225(4): 50-56 (in Chinese).
24 ZHANG K, DUAN G R, MA M D. Adaptive sliding-mode control for spacecraft relative position tracking with maneuvering target[J]. International Journal of Robust and Nonlinear Control201828(18): 5786-5810.
25 宁君, 陈汉民, 李伟, 等. 基于扩张状态观测器的有限时间船舶编队控制[J]. 中国舰船研究202318(1): 60-66.
  NING J, CHEN H M, LI W, et al. Finite-time ship formation control based on extended state observer[J]. Chinese Journal of Ship Research202318(1): 60-66 (in Chinese).
26 YIN Z Y, SULEMAN A, LUO J J, et al. Appointed-time prescribed performance attitude tracking control via double performance functions[J]. Aerospace Science and Technology201993: 105337.
27 KHALIL H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.
28 BAINOV D, SIMEONOV P. Integral Inequalities and Applications[M]. Dordrecht: Springer Netherlands, 1992.
29 SONTAG E D. Mathematical control theory: deterministic finite dimensional systems[M]. 2nd ed. New York: Springer, 1998.
30 PAN Z H, ZHANG C X, XIA Y Q, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs202269(3): 1129-1133.
文章导航

/