考虑时间约束的解析再入滑翔制导
收稿日期: 2023-11-07
修回日期: 2023-12-04
录用日期: 2024-01-05
网络出版日期: 2024-01-24
基金资助
国家自然科学基金(11602296);陕西省自然科学基础研究计划(2019JM-434);智控实验室开放基金资助(2023-ZKSYS-KF04-02)
Reentry glide analytical guidance considering time constraints
Received date: 2023-11-07
Revised date: 2023-12-04
Accepted date: 2024-01-05
Online published: 2024-01-24
Supported by
National Natural Science Foundation of China(11602296);Natural Science Basis Research Plan in Shaanxi Province(2019JM-434);The Open Fund of the Intelligent Control Laboratory(2023-ZKSYS-KF04-02)
针对滑翔飞行器时间可控再入制导问题,提出了一种基于阻力加速度-能量剖面解析设计、在线自适应解析更新及鲁棒跟踪算法的时间可控再入制导方法。首先,设计了基于走廊边界双参数插值的多段光滑阻力加速度标准剖面,并给出了终端当地弹道倾角等多种约束的施加方法;推导了考虑地球自转影响的待飞时间、航程解析预测表达式,进而通过校正双剖面参数完成标准剖面的高精度解析设计。随后,设计了一种基于双/单参数顺序求解模式的阻力加速度剖面在线自适应更新策略,可根据实时态势进行两种剖面更新算法的自适应切换,完成待飞剖面的自适应解析更新,同时满足终端能量、当地弹道倾角、航程及飞行时间约束要求。在此基础上,设计了标准剖面跟踪算法和时间可控再入解析制导算法框架,实现了制导指令的在线快速生成。最终,以CAV-H再入滑翔为例进行仿真,验证了本文方法的有效性、快速性及多任务适用性;与现有基于解析预测校正的方法相比,所提方法具有较高的时间、航程及终端状态的控制精度;与现有基于标准剖面的方法相比,所提方法具有较高的计算效率和较大的时间可调范围。
王培臣 , 闫循良 , 李新国 , 王子安 . 考虑时间约束的解析再入滑翔制导[J]. 航空学报, 2024 , 45(23) : 329844 -329844 . DOI: 10.7527/S1000-6893.2024.29844
A time controllable entry guidance method is proposed based on analytical design of drag-energy profile, online adaptive analytical update, and robust tracking algorithm. Firstly, a multi-segment smooth drag-energy standard profile based on corridor boundary dual parameter interpolation is designed, and multiple constraints including terminal flight path angle are applied. Then, the analytical predictive formulas for time and range to-go considering the influence of earth rotation are derived, and high-precision analytical design of the standard profile is completed by correcting the double parameters of the profile. Subsequently, a drag-energy profile online adaptive update strategy based on dual/single parameter sequential solution mode is designed, which can adaptively switch between two profile update algorithms based on real-time situation, and complete analytical update of the remaining profile adaptively, satisfying the constraints of terminal energy, flight path angle, range and flight time. On this basis, a standard profile tracking algorithm and time controllable entry analytical guidance algorithm framework are designed, achieving online rapid generation of guidance commands. Finally, using CAV-H entry glide as an example, simulation is conducted to verify the effectiveness, computational efficiency, and multi-task applicability of the proposed method. Compared with current methods based on analytical predictor-corrector guidance, the proposed method has higher time, range and terminal states control accuracy. Compared with existing methods based on standard profile, the proposed method has higher computational efficiency and larger adjustable time range.
1 | 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1): 023377. |
ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023377 (in Chinese). | |
2 | 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 020256. |
ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 020256 (in Chinese). | |
3 | 郭明坤, 杨峰, 刘凯, 等. 高超声速飞行器协同制导技术研究进展[J]. 空天技术, 2022(2): 75-84. |
GUO M K, YANG F, LIU K, et al. Review on cooperative guidance technology for hypersonic flight vehicle[J]. Aerospace Technology, 2022(2): 75-84 (in Chinese). | |
4 | HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1979, 27(3): 239-268. |
5 | SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6): 986-996. |
6 | GUO J, WU X Z, TANG S J. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1343-1354. |
7 | XIE Y, LIU L H, TANG G J, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88: 44-60. |
8 | LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1067-1075. |
9 | LU P. Entry guidance: A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713-728. |
10 | LIANG Z X, YU J L, REN Z, et al. Trajectory planning for cooperative flight of two hypersonic entry vehicles: AIAA-2017-2251[R]. Reston: AIAA, 2017. |
11 | 姜鹏, 郭栋, 韩亮, 等. 多飞行器再入段时间协同弹道规划方法[J]. 航空学报, 2020, 41(S1): 723776. |
JIANG P, GUO D, HAN L, et al. Trajectory planning method of multi-vehicle entry phase time coordination[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723776 (in Chinese). | |
12 | LIANG Z X, LV C, ZHU S Y. Lateral entry guidance with terminal time constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2544-2553. |
13 | 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 322565. |
WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565 (in Chinese). | |
14 | 王浩凝, 唐胜景, 郭杰, 等. 带有动态攻角剖面的时间约束再入制导[J]. 空天防御, 2021, 4(1): 71-76. |
WANG H N, TANG S J, GUO J, et al. Time-constrained entry guidance with dynamic angle of attack profile[J]. Air & Space Defense, 2021, 4(1): 71-76 (in Chinese). | |
15 | 乔浩, 李师尧, 李新国. 多高超声速飞行器静态协同再入制导方法[J]. 宇航学报, 2020, 41(5): 541-552. |
QIAO H, LI S Y, LI X G. Static cooperative entry guidance method for multi-hypersonic vehicles[J]. Journal of Astronautics, 2020, 41(5): 541-552 (in Chinese). | |
16 | YU J L, DONG X W, LI Q D, et al. Cooperative guidance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3): 990-1005. |
17 | LI Z H, HE B, WANG M H, et al. Time-coordination entry guidance for multi-hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 89: 123-135. |
18 | 刘哲, 陆浩然, 郑伟, 等. 多滑翔飞行器时间协同轨迹快速规划[J]. 航空学报, 2021, 42(11): 524497. |
LIU Z, LU H R, ZHENG W, et al. Rapid time-coordination trajectory planning method for multi-glide vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524497 (in Chinese). | |
19 | 韩嘉俊, 王小虎, 郝昀, 等. 带有时间约束的再入滑翔轨迹设计[J]. 宇航学报, 2020, 41(4): 438-446. |
HAN J J, WANG X H, HAO Y, et al. Entry trajectory planning with flight time constraints[J]. Journal of Astronautics, 2020, 41(4): 438-446 (in Chinese). | |
20 | 刘旭, 李响, 王晓鹏. 高超声速滑翔飞行器解析协同再入制导[J]. 宇航学报, 2023, 44(5): 731-742. |
LIU X, LI X, WANG X P. Analytical cooperative entry guidance for hypersonic glide vehicles[J]. Journal of Astronautics, 2023, 44(5): 731-742 (in Chinese). | |
21 | YU W B, CHEN W C, JIANG Z G, et al. Analytical entry guidance for coordinated flight with multiple no-fly-zone constraints[J]. Aerospace Science and Technology, 2019, 84: 273-290. |
22 | 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 321958. |
FANG K, ZHANG Q Z, NI K, et al. Time-coordinated entry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 321958 (in Chinese). | |
23 | 张晚晴, 余文斌, 李静琳, 等. 基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报, 2021, 42(7): 1400-1411. |
ZHANG W Q, YU W B, LI J L, et al. Cooperative entry guidance for intelligent lateral maneuver of hypersonic vehicle based on downrange analytical solution[J]. Acta Armamentarii, 2021, 42(7): 1400-1411 (in Chinese). | |
24 | 方科, 张庆振, 倪昆, 等. 飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报, 2019, 51(10): 90-97. |
FANG K, ZHANG Q Z, NI K, et al. Entry guidance law with flight time constraint[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 90-97 (in Chinese). | |
25 | 黄汉斌, 梁禄扬, 杨业. 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报, 2018, 39(12): 322558. |
HUANG H B, LIANG L Y, YANG Y. Entry trajectory planning and guidance method based on inverse drag acceleration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322558 (in Chinese). | |
26 | 辜青萍. 拐点和一元三次方程的求根公式[J]. 江汉大学学报, 2002, 19(1): 28-31. |
GU Q P. Inflection point and the formula of extracting roots on cubic equation[J]. Journal of Jianghan University, 2002, 19(1): 28-31 (in Chinese). | |
27 | LIANG Z X, REN Z, LI Q D, et al. Decoupled three-dimensional entry trajectory planning based on maneuver coefficient[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(7): 1281-1292. |
28 | 张远龙. 基于三维剖面的滑翔飞行器弹道规划与制导方法研究[D]. 长沙: 国防科技大学, 2018. |
ZHANG Y L. Research on entry trajectory generation for hypersonic glide vehicles based on three-dimensional profile[D].Changsha: National University of Defense Technology, 2018 (in Chinese). | |
29 | PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment guide[R]. Albuqerque: Schafer Corporation for AFRL and AFSPC, 2003. |
/
〈 |
|
〉 |