弱小目标检测与跟踪专栏

基于多层多向Transformer的红外弱小目标检测

  • 王潇 ,
  • 刘贞报
展开
  • 西北工业大学 民航学院,西安 710072

收稿日期: 2023-08-30

  修回日期: 2023-10-30

  录用日期: 2024-01-08

  网络出版日期: 2024-01-24

基金资助

国家自然科学基金(52072309);陕西省重点研发计划(2019ZDLGY14-02-01);深圳市基础研究资助项目(JCYJ201908061522);航空科学基金(ASFC-2018ZC53026)

Infrared small target detection based on multi⁃layer multi⁃direction transformer

  • Xiao WANG ,
  • Zhenbao LIU
Expand
  • School of Civil Aviation,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-08-30

  Revised date: 2023-10-30

  Accepted date: 2024-01-08

  Online published: 2024-01-24

Supported by

National Natural Science Foundation of China(52072309);Key Research and Development Program of Shaanxi(2019ZDLGY14-02-01);Shenzhen Fundamental Research Program(JCYJ20190806152203506);Aeronautical Science Foundation of China(ASFC-2018ZC53026)

摘要

针对基于卷积神经网络的红外图像弱小目标检测方法面临卷积神经网络的感受野有限,扩展感受野的下采样操作容易导致特征丢失,以及卷积网络对局部对比特征提取能力有限的问题,提出了一种基于多层多向Transformer的红外图像弱小目标检测算法。首先使用感受野较大、对比特征提取能力较强的Transformer网络作为基本单元,设计U型深度神经网络和多特征层融合网络将局部特征以及全局特征进行融合。同时在解码网络设计双向注意力算子,利用自注意力计算机制分别计算空间方向和特征方向的注意力特征,进一步提高深度网络提取弱小目标和周边区域对比特征的能力。另外在主干网络最后添加数量约束网络,通过统计对比检测结果中目标的数量,减小误检目标的数目,提高目标检测的准确度。最后在多个实验数据集上和已有方法进行了对比实验,在各个评价参数上取得了最多35%的提升,证明所提红外弱小目标检测算法具有较高的准确性。

本文引用格式

王潇 , 刘贞报 . 基于多层多向Transformer的红外弱小目标检测[J]. 航空学报, 2024 , 45(14) : 629490 -629490 . DOI: 10.7527/S1000-6893.2024.29490

Abstract

The convolution neural network based infrared small target detection suffers from the problems of limited receptive field of convolution kernel, information loss caused by down sampling operation, and limited power of the convolution neural network in relative information extraction. To solve these problems, a multi-layer multi-direction Transformer based neural network is proposed. Firstly, the Transformer block is adopted as the basic operator since it has a larger receptive field and more powerful in extracting relative information. The proposed network is a U-shaped network, and fuses local and global information with multi-layers structure. Meanwhile, to enhance the network’s ability to detect the infrared small target, a dual-direction attention operator which calculates the attention information along spatial and channel directions is designed for the decoder network. Finally, an additional network is added to the backbone network to calculate the number of the detected infrared small targets. This additional network reduces the number of falsely detected targets by comparing the calculated number with ground truth. The proposed method is tested on several datasets and the evaluation metrics in comparison with state-of-the-art methods. The proposed method achieves an improvement by 35% at most, which proves the effectiveness of the proposed method.

参考文献

1 DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure[J]. IEEE Transactions on Geoscience and Remote Sensing201654(7): 4204-4214.
2 梁杰, 李磊, 任君, 等. 基于深度学习的红外图像遮挡干扰检测方法[J]. 兵工学报201940(7): 1401-1410.
  LIANG J, LI L, REN J, et al. Infrared image occlusion interference detection method based on deep learning[J]. Acta Armamentarii201940(7): 1401-1410 (in Chinese).
3 WANG W T, QIN H L, CHENG W X, et al. Small target detection in infrared image using convolutional neural networks[C]∥ AOPC 2017: Optical Sensing and Imaging Technology and Applications. Bellingham:SPIE,2017:1335-1340.
4 YU C, LIU Y P, WU S H, et al. Infrared small target detection based on multiscale local contrast learning networks[J]. Infrared Physics and Technology2022123: 104107.
5 SHI Q, ZHANG C X, CHEN Z, et al. An infrared small target detection method using coordinate attention and feature fusion[J]. Infrared Physics and Technology2023131: 104614.
6 WU X, HONG D F, CHANUSSOT J. UIU-Net: U-Net in U-Net for infrared small object detection[J]. IEEE Transactions on Image Processing202232: 364-376.
7 LI C Q, HUANG Z C, XIE X M, et al. IST-TransNet: Infrared small target detection based on transformer network[J]. Infrared Physics & Technology2023132: 104723.
8 龙云利, 徐晖, 安玮, 等. 基于约束序贯M估计的时空域融合红外杂波抑制[J]. 航空学报201132(8): 1531-1541.
  LONG Y L, XU H, AN W, et al. Spatial-temporal fused filtering for infrared clutter suppression based on restricted sequential M-estimation[J]. Acta Aeronautica et Astronautica Sinica201132(8): 1531-1541 (in Chinese).
9 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1137-1149.
10 REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788.
11 RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing202012(9): 1432.
12 CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202345(11): 13467-13488.
13 张凯, 王凯迪, 杨曦, 等. 基于DNET的空中红外目标抗干扰识别算法[J]. 航空学报202142(2): 324223.
  ZHANG K, WANG K D, YANG X, et al. Anti-interference recognition algorithm based on DNET for infrared aerial target[J]. Acta Aeronautica et Astronautica Sinica202142(2): 324223 (in Chinese).
14 PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing201452(1): 574-581.
15 GAO C Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing201322(12): 4996-5009.
16 BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition201043(6): 2145-2156.
17 DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure[J]. IEEE Transactions on Geoscience and Remote Sensing201654(7): 4204-4214.
18 WANG H, ZHOU L P, WANG L. Miss detection vs false alarm: Adversarial learning for small object segmentation in infrared images[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 8508-8517.
19 DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing202159(11): 9813-9824.
20 LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing202232: 1745-1758.
21 ZHANG M J, BAI H C, ZHANG J, et al. RKformer: Runge-Kutta transformer with random-connection attention for infrared small target detection [C]∥ Proceedings of the 30th ACM International Conference on Multimedia. New York:ACM, 2022: 1730-1738.
22 YING X Y, LIU L, WANG Y Q, et al. Mapping degeneration meets label evolution: Learning infrared small target detection with single point supervision[C]∥ 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 15528-15538.
23 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM,2017:6000-6010.
24 CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]∥ 16th European Conference on Computer Vision (ECCV). Cham:Springer, 2020: 213-229.
25 LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows[C]∥ 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002.
26 WANG Z D, CUN X D, BAO J M, et al. Uformer: A general U-shaped transformer for image restoration[C]∥ 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 17662-17672.
27 ZHANG M J, ZHANG R, YANG Y X, et al. ISNet: Shape matters for infrared small target detection[C]∥ 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 867-876.
28 RIVEST J F, FORTIN R. Detection of dim targets in digital infrared imagery by morphological image processing[J]. Optical Engineering199635(7): 1886-1893.
29 HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters201815(4): 612-616.
30 MORADI S, MOALLEM P, SABAHI M F. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm[J]. Infrared Physics & Technology201889: 387-397.
31 ZHANG L D, PENG Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing201911(4): 382-390.
32 王强, 吴乐天, 王勇, 等. 基于关键点检测的红外弱小目标检测[J]. 航空学报202344(10): 328173.
  WANG Q, WU L T, WANG Y, et al. An infrared small target detection method based on key point[J]. Acta Aeronautica et Astronautica Sinica202344(10): 328173 (in Chinese).
文章导航

/