流体力学与飞行力学

黏性对液滴偏心撞击旋转壁面铺展特性的影响

  • 杨文 ,
  • 张鑫玺 ,
  • 汪翔宇 ,
  • 刘川扬 ,
  • 张云波
展开
  • 中国民航大学 中欧航空工程师学院,天津 300300
.E-mail: w_yang@cauc.edu.cn

收稿日期: 2023-11-08

  修回日期: 2023-12-11

  录用日期: 2024-01-08

  网络出版日期: 2024-01-17

基金资助

国家自然科学基金(12102457);中央高校基本科研业务费项目(3122019184)

Effect of liquid viscosity on droplet spreading after off⁃axis impact on rotating wall

  • Wen YANG ,
  • Xinxi ZHANG ,
  • Xiangyu WANG ,
  • Chuanyang LIU ,
  • Yunbo ZHANG
Expand
  • Sino?European Institute of Aviation Engineering,Civil Aviation University of China,Tianjin 300300,China
E-mail: w_yang@cauc.edu.cn

Received date: 2023-11-08

  Revised date: 2023-12-11

  Accepted date: 2024-01-08

  Online published: 2024-01-17

Supported by

National Natural Science Foundation of China(12102457);the Fundamental Research Funds for the Central Universities(3122019184)

摘要

液滴撞击旋转壁面广泛存在于工程实践中,如在航空领域发生的发动机吸雨吸冰现象,这些现象会导致发动机性能下降甚至引发安全问题,因此研究液滴撞击旋转壁面具有重要意义。搭建并开展液滴撞击旋转圆盘实验并用高速相机采集图像,在保持液滴尺寸、撞击速度、表面张力和撞击位置不变的情况下,研究了转速和黏性对液滴偏心撞击后铺展规律的影响。通过后处理液滴铺展动态图片,定量获取液滴沿径向和切向铺展数据。实验结果表明,液滴径向-切向铺展动态模式在旋转邦德数和旋转雷诺数下划分出4个区域:撞击惯性力-黏附力、撞击惯性力-黏附力/黏滞力过渡、撞击惯性力/离心力过渡-黏附力、撞击惯性力-黏滞力。径向上撞击惯性力主导模式下,最大径向铺展因子随奥内佐格数和旋转邦德数增大而减小,且在回缩阶段径向铺展因子与无量纲时间t/(Oh·T)满足-1/3幂次标度律。切向上黏附力主导模式下,液滴切向铺展速率与无量纲时间t/(Oh·T)满足2/3幂次标度律;切向上黏滞力主导模式下,切向铺展存在最大铺展因子。

本文引用格式

杨文 , 张鑫玺 , 汪翔宇 , 刘川扬 , 张云波 . 黏性对液滴偏心撞击旋转壁面铺展特性的影响[J]. 航空学报, 2024 , 45(16) : 129847 -129847 . DOI: 10.7527/S1000-6893.2024.29847

Abstract

Droplet impact on the rotating wall widely exists in the engineering field, such as rain ingestion and ice accretion occurring on aircraft engines, which will lead to efficiency loss and even safety problems. Therefore, it is of great significance to study the impact of liquid droplets on the rotating wall. An experimental set-up of droplet impacting on a rotating disc is built and experiments are conducted and recorded with a high-speed camera. The effects of the rotating speed and viscosity on the droplet spreading after off-axis impact are studied while the droplet size, impact velocity, surface tension and impact position remain unchanged. The evolution of droplet diameter data along the radial and tangential directions was quantitatively obtained by post-processing the recoded images. The experimental results show that the radial-tangential spreading dynamic follows four different regimes with the rotational Bond number and rotational Reynolds number: impact inertia force-adhesion force, impact inertia force-adhesion force/viscous force transition, impact inertia force/centrifugal force transition-adhesion force, and impact inertia force-viscous force. In the impact inertial force dominant regime for the radial spreading, the maximum radial spreading factor decreases with the Ohnesorge number and the rotational Bond number, and the radial spreading factor evolves with the dimensionless time t/(Oh·T) by a -1/3 pow-law. In the tangential adhesion force dominant regime, the tangential spreading rate of droplets exhibits a 2/3 pow-law with the dimensionless time t/(Oh·T). In the tangential viscosity force dominant mode, maximal spreading factors are reached in the tangential direction.

参考文献

1 RAN Q H, SU D Y, LI P, et al. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion[J]. Journal of Hydrology2012424: 99-111.
2 严红, 陈福振. 航空发动机燃油雾化特性研究进展[J]. 推进技术202041(9): 2038-2058.
  YAN H, CHEN F Z. Review on fuel atomization in aeroengine[J]. Journal of Propulsion Technology202041(9): 2038-2058 (in Chinese).
3 ZABLE J L. Splatter during ink jet printing[J]. IBM Journal of Research and Development197721(4): 315-320.
4 GOHARDANI O. Impact of erosion testing aspects on current and future flight conditions[J]. Progress in Aerospace Sciences201147(4): 280-303.
5 NIKOLAIDIS T, PILIDIS P. The effect of water ingestion on an axial flow compressor performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2014228(3): 411-423.
6 HAMED A, TABAKOFF W C, WENGLARZ R V. Erosion and deposition in turbomachinery[J]. Journal of Propulsion and Power200622(2): 350-360.
7 陈光. 雨水对飞机发动机的影响[J]. 航空发动机201339(4): 1-4.
  CHEN G. Influence of rain on aeroengine[J]. Aeroengine201339(4): 1-4 (in Chinese).
8 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报201738(2): 520706.
  DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520706 (in Chinese).
9 LI L K, LIU Y, HU H. An experimental study on dynamic ice accretion process over the surfaces of rotating aero-engine spinners[J]. Experimental Thermal and Fluid Science2019109: 109879.
10 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术201839(12): 2641-2650.
  YUAN Q H, FAN J, BAI G C. Review on ice crystal icing in aeroengine[J]. Journal of Propulsion Technology201839(12): 2641-2650 (in Chinese).
11 YARIN A L. DROP IMPACT DYNAMICS: Splashing, spreading, receding, bouncing…[J]. Annual Review of Fluid Mechanics200638: 159-192.
12 JOSSERAND C, THORODDSEN S T. Drop impact on a solid surface[J]. Annual Review of Fluid Mechanics201648: 365-391.
13 LAGUBEAU G, FONTELOS M A, JOSSERAND C, et al. Spreading dynamics of drop impacts[J]. Journal of Fluid Mechanics2012713: 50-60.
14 SANJAY V, CHANTELOT P, LOHSE D. When does an impacting drop stop bouncing?[J]. Journal of Fluid Mechanics2023958: A26.
15 BUKSH S, MARENGO M, AMIRFAZLI A. Impacting of droplets on moving surface and inclined surfaces[J]. Atomization and Sprays202030(8): 557-574.
16 ZHANG X, ZHU Z B, ZHANG C Y, et al. Reduced contact time of a droplet impacting on a moving superhydrophobic surface[J]. Applied Physics Letters2020117(15): 151602.
17 MELO F, JOANNY J F, FAUVE S. Fingering instability of spinning drops[J]. Physical Review Letters198963(18): 1958-1961.
18 屈冲. 液滴与旋转壁面的冲击动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 26-37.
  QU C. A study of impact dynamics of droplet on the rotating substrate[D].Harbin: Harbin Institute of Technology, 2020: 26-37 (in Chinese).
19 PAN Y M, WANG Z B, ZHAO X Y, et al. On axisymmetric dynamic spin coating with a single drop of ethanol[J]. Journal of Fluid Mechanics2022951: A30.
20 WANG M W, CHOU F C. Fingering instability and maximum radius at high rotational bond number[J]. Journal of the Electrochemical Society2001148(5): G283.
21 POVAROV O A, NAZAROV O I, IGNAT’EVSKAYA L A, et al. Interaction of drops with boundary layer on rotating surface[J]. Journal of Engineering Physics197631(6): 1453-1456.
22 YUAN X F, LI J Y, ZHANG B. Effects of surface tension on drop impact on a horizontal rotating disk[J]. Applied Mechanics and Materials2012268-270: 1084-1093.
23 CHOU F C, ZEN T S, LEE K W. An experimental study of a water droplet impacting on a rotating wafer[J]. Atomization and Sprays200919(10): 905-916.
24 LI J Y, YUAN X F, HAN Q, et al. Impact patterns and temporal evolutions of water drops impinging on a rotating disc[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2012226(4): 956-967.
25 MOGHTADERNEJAD S, JADIDI M, JOHNSON Z, et al. Droplet impact dynamics on an aluminum spinning disk[J]. Physics of Fluids202133(7): 072103.
26 MOGHTADERNEJAD S, JADIDI M, HANSON J, et al. Dynamics of droplet impact on a superhydrophobic disk[J]. Physics of Fluids202234(6): 062104.
27 周易, 金哲岩, 杨志刚. 液滴撞击移动及旋转表面过程研究综述[J]. 浙江大学学报(工学版)202357(10): 2060-2076.
  ZHOU Y, JIN Z Y, YANG Z G. Review on droplets impact process on moving and rotating surfaces[J]. Journal of Zhejiang University (Engineering Science)202357(10): 2060-2076 (in Chinese).
28 LI J X, ZHANG H, LIU Q F, et al. Dynamics of a single droplet with different viscosity impact onto a stainless-steel surface[J]. IOP Conference Series: Earth and Environmental Science2018188: 012028.
29 QIN M X, TANG C L, TONG S Q, et al. On the role of liquid viscosity in affecting droplet spreading on a smooth solid surface[J]. International Journal of Multiphase Flow2019117: 53-63.
30 KAI R G, FEUILLEBOIS F. Influence of surface roughness on liquid drop impact[J]. Journal of Colloid and Interface Science1998203(1): 16-30.
31 EXTRAND C W, GENT A N. Retention of liquid drops by solid surfaces[J]. Journal of Colloid and Interface Science1990138(2): 431-442.
32 ?IKALO, TROPEA C, GANI? E N. Dynamic wetting angle of a spreading droplet[J]. Experimental Thermal and Fluid Science200529(7): 795-802.
33 岳浩. 视频检测中的相机标定方法研究[D]. 武汉: 华中科技大学, 2012: 7-23.
  YUE H. Research on camera calibration method in video detection[D].Wuhan: Huazhong University of Science and Technology, 2012: 7-23 (in Chinese).
34 BARTOLO D, JOSSERAND C, BONN D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces[J]. Journal of Fluid Mechanics2005545: 329-338.
文章导航

/