[1] 纪宇晗,孙侠生,俞笑等.双碳战略下的新能源航空发展展望[J].航空科学技术,2022,33(12):1-11.
[2] 韩玉琪,袁善虎,王飒.“碳中和”目标牵引下的航空动力发展分析[J].航空动力,2021(06):28-30.
[3] Ng K S, Farooq D, Yang A. Global biorenewable de-velopment strategies for sustainable aviation fuel production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111502.
[4] Abrantes I, Ferreira A F, Silva A, et al. Sustainable aviation fuels and imminent technologies-CO2 emis-sions evolution towards 2050[J]. Journal of Cleaner Production, 2021, 313: 127937.
[5] Chiaramonti D. Sustainable aviation fuels: the chal-lenge of decarbonization[J]. Energy Procedia, 2019, 158: 1202-1207.
[6] Yusaf T, Fernandes L, Abu Talib A R, et al. Sustaina-ble aviation—Hydrogen is the future[J]. Sustainability, 2022, 14(1): 548.
[7] Bauen A, Bitossi N, German L, et al. Sustainable Avi-ation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in avia-tion[J]. Johnson Matthey Technology Review, 2020, 64(3): 263-278.
[8] 韩玉琪,王则皓,刘英杰等.通向碳中和的航空新能源动力发展路径分析[J].航空动力,2022(03):13-15.
[9] 张扬军,彭杰,钱煜平等.氢能航空的关键技术与挑战[J].航空动力,2021(01):20-23.
[10] 李开省.碳中和目标下航空能源转型研究[J].航空科学技术,2021,32(09):1-11.
[11] Petrescu R V V, Machin A, Fontanez K, et al. Hydro-gen for aircraft power and propulsion[J]. international journal of hydrogen energy, 2020, 45(41): 20740-20764.
[12] Dawood F, Anda M, Shafiullah G M. Hydrogen pro-duction for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869.
[13] Troeltsch F M, Engelmann M, Scholz A E, et al. Hy-drogen powered long haul aircraft with minimized climate impact[C]//AIAA Aviation 2020 forum. 2020: 2660.
[14] Mukhopadhaya J, Rutherford D. Performance analy-sis of evolutionary hydrogen-powered aircraft[J]. ICCT white paper, 2022.
[15] Vardon D R, Sherbacow B J, Guan K, et al. Realizing “net-zero-carbon” sustainable aviation fuel[J]. Joule, 2022, 6(1): 16-21.
[16] Yilmaz N, Atmanli A. Sustainable alternative fuels in aviation[J]. Energy, 2017, 140: 1378-1386.
[17] Undavalli V, Olatunde O B G, Boylu R, et al. Recent advancements in sustainable aviation fuels[J]. Pro-gress in Aerospace Sciences, 2023, 136: 100876.
[18] 曹冠杰,王業輝,孫小金.氢能航空发展现状分析[J].航空动力,2022(02):29-33.
[19] Nojoumi H, Dincer I, Naterer G F. Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion[J]. International journal of hydrogen energy, 2009, 34(3): 1363-1369.
[20] Eisenhut D, Moebs N, Windels E, et al. Aircraft re-quirements for sustainable regional aviation[J]. Aero-space, 2021, 8(3): 61.
[21] Brewer G D. The prospects for liquid hydrogen fueled aircraft[J]. International journal of hydrogen energy, 1982, 7(1): 21-41.
[22] Dahl G, Suttrop F. Engine control and low-NOx com-bustion for hydrogen fuelled aircraft gas turbines[J]. International Journal of Hydrogen Energy, 1998, 23(8): 695-704.
[23] Sürer M G, Arat H T. State of art of hydrogen usage as a fuel on aviation[J]. European Mechanical Science, 2018, 2(1): 20-30.
[24] Cecere D, Giacomazzi E, Ingenito A. A review on hydrogen industrial aerospace applications[J]. Inter-national journal of hydrogen energy, 2014, 39(20): 10731-10747.
[25] Lee D S, Fahey D W, Skowron A, et al. The contribu-tion of global aviation to anthropogenic climate forc-ing for 2000 to 2018[J]. Atmospheric Environment, 2021, 244: 117834.
[26] Bruce S, Temminghoff M, Hayward J, et al. Opportu-nities for hydrogen in aviation[J]. Csiro, 2020.
[27] Proesmans P J, Vos R. Comparison of Future Aviation Fuels to Minimize the Climate Impact of Commercial Aircraft[C]//AIAA Aviation 2022 Forum. 2022: 3288.
[28] Koroneos C, Dompros A, Roumbas G, et al. Ad-vantages of the use of hydrogen fuel as compared to kerosene[J]. Resources, Conservation and Recycling, 2005, 44(2): 99-113.
[29] Khandelwal B, Karakurt A, Sekaran P R, et al. Hy-drogen powered aircraft: The future of air transport[J]. Progress in Aerospace Sciences, 2013, 60: 45-59.
[30] Baharozu E, Soykan G, Ozerdem M B. Future aircraft concept in terms of energy efficiency and environ-mental factors[J]. Energy, 2017, 140: 1368-1377.
[31] Schmidtchen U, Behrend E, Pohl H W, et al. Hydro-gen aircraft and airport safety[J]. Renewable and sus-tainable energy reviews, 1997, 1(4): 239-269.
[32] Farokhi S. Aircraft Propulsion: Cleaner, Leaner, and Greener[M]. State of New Jersey: John Wiley & Sons, 2021.
[33] Woehler S, Burschyk T, H??y J, et al. Design and Assessment of Long Range Aircraft Concepts with focus on Fossil Kerosene, Sustainable Aviation Fuel and Liquid Hydrogen as Energy Carriers[C]//AIAA AVIATION 2023 Forum. 2023: 3229.
[34] Westenberger A. Liquid hydrogen fuelled aircraft–system analysis[J]. CRYOPLANE, The European Commission, Brussels, Belgium, Report No. GRD1-1999-10014, 2003.
[35] Svensson F. Potential of reducing the environmental impact of civil subsonic aviation by using liquid hy-drogen[D]. Cranfield Campus: Cranfield University, 2005.
[36] Baroutaji A, Wilberforce T, Ramadan M, et al. Com-prehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and sustainable energy reviews, 2019, 106: 31-40.
[37] Waddington E, Merret J M, Ansell P J. Impact of LH2 fuel cell-electric propulsion on aircraft configuration and integration[C]//AIAA Aviation 2021 Forum. 2021: 2409.
[38] Bicer Y, Dincer I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10722-10738.
[39] DelRosario R. A future with hybrid electric propulsion systems: A NASA perspective[C]//Turbine Engine Technology Symposium. 2014 (GRC-E-DAA-TN17600).
[40] Prewitz M, Bardenhagen A, Beck R. Hydrogen as the fuel of the future in aircrafts–challenges and oppor-tunities[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25378-25385.
[41] Richter S, Braun-Unkhoff M, Naumann C, et al. Paths to alternative fuels for aviation[J]. CEAS Aeronautical Journal, 2018, 9(3): 389-403.
[42] Verstraete D. On the energy efficiency of hydrogen-fuelled transport aircraft[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7388-7394.
[43] Contreras A, Yi?it S, ?zay K, et al. Hydrogen as avia-tion fuel: a comparison with hydrocarbon fuels[J]. In-ternational Journal of Hydrogen Energy, 1997, 22(10-11): 1053-1060.
[44] Niaz S, Manzoor T, Pandith A H. Hydrogen storage: Materials, methods and perspectives[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 457-469.
[45] Winnefeld C, Kadyk T, Bensmann B, et al. Modelling and designing cryogenic hydrogen tanks for future aircraft applications[J]. Energies, 2018, 11(1): 105.
[46] Rivard E, Trudeau M, Zaghib K. Hydrogen storage for mobility: A review[J]. Materials, 2019, 12(12): 1973.
[47] Gomez A, Smith H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis[J]. Aerospace Science and Technology, 2019, 95: 105438.
[48] Ansell P J. Hydrogen-Electric Aircraft Technologies and Integration: Enabling an environmentally sus-tainable aviation future[J]. IEEE Electrification Mag-azine, 2022, 10(2): 6-16.
[49] Verstraete D. Long range transport aircraft using hy-drogen fuel[J]. International journal of hydrogen en-ergy, 2013, 38(34): 14824-14831.
[50] Verstraete D, Hendrick P, Pilidis P, et al. Hydrogen fuel tanks for subsonic transport aircraft[J]. Interna-tional journal of hydrogen energy, 2010, 35(20): 11085-11098.
[51] Verstraete D. The potential of liquid hydrogen for long range aircraft propulsion[D]. Cranfield Campus: Cranfield University, 2009.
[52] Sloop J L. Liquid hydrogen as a propulsion fuel, 1945-1959[M]. Scientific and Technical Information Office, National Aeronautics and Space Administra-tion, 1978.
[53] BREWER G. The case for hydrogen fueled transport aircraft[C]//9th Propulsion Conference. 1974: 1323.
[54] Brewer G D, Morris R E, Davis G W, et al. Study of fuel systems for LH2-fueled subsonic transport air-craft, volume 2[R]. 1978.
[55] Brewer G D. Advanced supersonic technology con-cept study: Hydrogen fueled configuration[R]. 1974.
[56] Brewer G D, Morris R E. Study of LH2 fueled sub-sonic passenger transport aircraft[R]. 1976.
[57] Secretariat I. Electric, hybrid, and hydrogen aircraft-state of play[J]. Climate Change Mitigation: Technol-ogy and Operations, 2019, 124-130.
[58] Maniaci D. Relative performance of a liquid hydro-gen-fueled commercial transport[C]//46th AIAA Aer-ospace sciences meeting and exhibit. 2008: 152.
[59] Daggett D L, Hendricks R C, Walther R, et al. Alter-nate fuels for use in commercial aircraft[R]. 2008.
[60] Derwent R, Simmonds P, O'Doherty S, et al. Global environmental impacts of the hydrogen economy[J]. International Journal of Nuclear Hydrogen Produc-tion and Applications, 2006, 1(1): 57-67.
[61] Jani? M. Greening commercial air transportation by using liquid hydrogen (LH2) as a fuel[J]. Internation-al journal of hydrogen energy, 2014, 39(29): 16426-16441.
[62] Svensson F, Hasselrot A, Moldanova J. Reduced envi-ronmental impact by lowered cruise altitude for liquid hydrogen-fuelled aircraft[J]. Aerospace Science and Technology, 2004, 8(4): 307-320.
[63] Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy[J]. Inter-national journal of hydrogen energy, 2012, 37(2): 1184-1203.
[64] Ponater M, Pechtl S, Sausen R, et al. Potential of the cryoplane technology to reduce aircraft climate im-pact: A state-of-the-art assessment[J]. Atmospheric Environment, 2006, 40(36): 6928-6944.
[65] Klug H G, Faass R. CRYOPLANE: hydrogen fuelled aircraft—status and challenges[J]. Air & Space Eu-rope, 2001, 3(3-4): 252-254.
[66] Yusaf T, Mahamude A S F, Kadirgama K, et al. Sus-tainable hydrogen energy in aviation–A narrative re-view[J]. International Journal of Hydrogen Energy [2023-11-10]. https://doi.org/10.1016/j.ijhydene.2023.02.086.
[67] Lin C S, Van Dresar N T, Hasan M M. Pressure control analysis of cryogenic storage systems[J]. Journal of propulsion and power, 2004, 20(3): 480-485.
[68] Adler E J, Martins J R R A. Hydrogen-powered air-craft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sci-ences, 2023, 141: 100922.
[69] 宋薇薇,杨凤田,项松等.氢能飞机研制进展及产业化前景分析[J].中国工程科学,2023,25(05):192-201.
[70] Kramer D. Hydrogen-powered aircraft may be getting a lift[J]. Physics Today, 2020, 73(12): 27-29.
[71] Boretti A. Progress of hydrogen subsonic commercial aircraft[J]. Frontiers in Energy Research, 2023, 11: 1195033.
[72] Aviation I H P. A fact-based study of hydrogen tech-nology, economics, and climate impact by 2050[J]. Fuel Cell and Hydrogen Joint Undertaking; IGEM: Boston, MA, USA, 2020.
[73] Brouckaert J F, Mirville F, Phuah K, et al. Clean Sky research and demonstration programmes for next-generation aircraft engines[J]. The Aeronautical Jour-nal, 2018, 122(1254): 1163-1175.
[74] 韩玉琪,王则皓,付玉.欧盟清洁航空计划分析[J].航空动力,2023(02):28-30.
[75] Debney D, Beddoes S, Foster M, et al. Zero-Carbon Emission Aircraft Concepts[R]. FlyZero report FZO-AIN-REP-0007, Aerospace Technology Institute, Mar 2022.
[76] 李明,刘金超.英国零碳飞行氢动力技术发展路线图[J].航空动力,2022(03):28-32.
[77] 王翔宇.英国零碳飞行发展愿景分析[J].航空动力,2022(03):24-27.
[78] Fan L, Tu Z, Chan S H. Recent development of hy-drogen and fuel cell technologies: A review[J]. Ener-gy Reports, 2021, 7: 8421-8446.
[79] Forsberg C W. Future hydrogen markets for large-scale hydrogen production systems[J]. International Journal of Hydrogen Energy, 2007, 32(4): 431-439.
[80] Thomas J M, Edwards P P, Dobson P J, et al. Decar-bonising energy: The developing international activi-ty in hydrogen technologies and fuel cells[J]. Journal of Energy Chemistry, 2020, 51: 405-415.
[81] 羅彧.氢能飞机蓄势待发[J].航空动力,2022(02):34-38.
[82] Hoelzen J, Silberhorn D, Zill T, et al. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure–review and research gaps[J]. Interna-tional Journal of Hydrogen Energy, 2022, 47(5): 3108-3130.
[83] Pontika E, Zaghari B, Zhou T, et al. Integrated Mis-sion Performance Analysis of Novel Propulsion Sys-tems: Analysis of a Fuel Cell Regional Aircraft Retro-fit[C]//AIAA SCITECH 2023 Forum. 2023: 0840.
[84] Voth V, Lübbe S M, Sch?fer M, et al. Functional Ap-proach to a Fuel Cell Thermal Management System in Safety-Critical Applications[C]//AIAA AVIATION 2023 Forum. 2023: 3879.
[85] 韩玉琪,王则皓,谭米.2022航空氢动力研发进展[J].航空动力,2023(02):13-16.
[86] Shank K, Thomas B, Agarwal R K. Insulation Design for Liquid Cryogenic Hydrogen Fuel Tanks for Hy-drogen Powered Aircraft[C]//AIAA AVIATION 2023 Forum. 2023: 3803.
[87] Millis M G, Tornabene R T, Jurns J M, et al. Hydrogen fuel system design trades for high-altitude long-endurance remotely-operated aircraft[R]. 2009.
[88] Mantzaroudis V K, Theotokoglou E E. Computational Analysis of Liquid Hydrogen Storage Tanks for Air-craft Applications[J]. Materials, 2023, 16(6): 2245.
[89] Ren J, Musyoka N M, Langmi H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review[J]. In-ternational journal of hydrogen energy, 2017, 42(1): 289-311.
[90] Qiu Y, Yang H, Tong L, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101.
[91] Huete J, Pilidis P. Parametric study on tank integration for hydrogen civil aviation propulsion[J]. Interna-tional Journal of Hydrogen Energy, 2021, 46(74): 37049-37062.
[92] Mills G L, Buchholtz B, Olsen A. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft[C]//AIP conference proceedings. American Institute of Physics, 2012, 1434(1): 773-780.
[93] Colozza A J, Kohout L. Hydrogen storage for aircraft applications overview[R]. 2002.
[94] Silberhorn D, Atanasov G, Walther J N, et al. Assess-ment of hydrogen fuel tank integration at aircraft lev-el[C]//Deutscher Luft-und Raumfahrtkongress. 2019.
[95] M?ller K T, Jensen T R, Akiba E, et al. Hydrogen-A sustainable energy carrier[J]. Progress in Natural Sci-ence: Materials International, 2017, 27(1): 34-40.
[96] 李尧.飞机温度环境适应性要求分析和确定技术探讨[J].装备环境工程,2008,5(06):60-64.
[97] Radio Technical Commission for Aeronautics Special Committee135. Environmental conditions and test procedures for airborne equipment: DO-160G[S]. Washington: Radio Technical Commission for Aero-nautics, 2010.
[98] HB 6167.2-2014, 民用飞机机载设备环境条件和试验方法.温度和高度试验[S]. 2014.
[99] HB 6167.3-2014, 民用飞机机载设备环境条件和试验方法.温度变化试验[S]. 2014.
[100] HB 6167.4-2014, 民用飞机机载设备环境条件和试验方法.湿热试验[S]. 2014.
[101] HB 6167.6-2014, 民用飞机机载设备环境条件和试验方法.振动试验[S]. 2014.
[102] HB 6167.5-2014, 民用飞机机载设备环境条件和试验方法.飞行冲击和坠撞安全试验[S]. 2014.
[103] HB 6167.13-2014, 民用飞机机载设备环境条件和试验方法.结冰试验[S]. 2014.
[104] HB 6167.7-2014, 民用飞机机载设备环境条件和试验方法.爆炸试验[S]. 2014.
[105] HB 6167.14-2014, 民用飞机机载设备环境条件和试验方法.指定火区的防火试验[S]. 2014.
[106] ISO. Basic considerations for the safety of hydrogen systems: ISO/TR 15916-2015[S]. 2015.
[107] EUROCAE/SAE WG80/AE-7AFC Hydrogen Fuel Cells Aircraft Fuel Cell Safety Guidelines: SAE AIR6464-2020[S]. 2020.
[108] Beeson H, Woods S. Guide for hydrogen hazards analysis on components and systems[R]. 2003.
[109] 冯文,王淑娟,倪维斗等.氢能的安全性和燃料电池汽车的氢安全问题[J].太阳能学报,2003,24(05):677-682.
[110] Drell I L, Belles F E. Survey of hydrogen combustion properties: No. NACA-TR-1383[R]. 1957.
[111] American Institute of Aeronautics and Astronautics. Guide to Safety of Hydrogen and Hydrogen Systems: ANSI/AIAA G-095A-2017[S]. 2017.
[112] 国家市场监督管理总局. 燃料电池电动汽车 安全要求:GB/T 24549-2020[S]. 2020.
[113] UN/WP. 29, Global Technical Regulation Concerning the Hydrogen and Fuel Cell Vehicles: GTR No. 13 [S]. 2023.
[114] ISO. Hydrogen detection apparatus. Stationary appli-cations: BS ISO 26142:2010[S]. 2010.
[115] 张振东. 氢气传感器及其检测技术[D].哈尔滨:哈尔滨工业大学,2013.
[116] 张颖,宿禹祺,陈俊帅等.氢气传感器研究的进展与展望[J].科学通报,2023,68(Z1):204-219.
[117] 张兴磊,花榕,陈双喜等.低浓度氢气检测方法研究进展[J].分析仪器,2009(05):6-12.
[118] 张巍,于德润,徐振忠等.催化燃烧氢气传感器的温度补偿研究[J].传感器与微系统,2020,39(08):62-64.
[119] Lee E B, Hwang I S, Cha J H, et al. Micromachined catalytic combustible hydrogen gas sensor[J]. Sen-sors and Actuators B: Chemical, 2011, 153(2): 392-397.
[120] Fuel cell road vehicles-Safety specifications-Protection against hydrogen hazards for vehicles fueled with compressed hydrogen: ISO 23273-2013[S]. 2013.
[121] Recommended Practice for General Fuel Cell Vehicle Safety: SAE J2578_2014[S]. 2014
[122] 李楚灏,刘佳.燃料电池汽车氢泄漏检测探究[J].时代汽车,2023(06):96-98.
[123] 安宁,尹保军,陈淑涵等.光纤传感技术研究进展[J].燕山大学学报,2023,47(05):441-457.
[124] Considerations for Hydrogen Fuel Cells in Airborne Applications: SAE AIR7765-2019[S]. 2019.
[125] Holborn P G, Ingram J M, Benson C B. Modelling studies of the hazards posed by liquid hydrogen use in civil aviation[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2022, 1226(1): 012059.
[126] 中国民用航空局. 中国民用航空规章 第25 部:运输类飞机适航标准:CCAR 25 R4-2011[S]. 2011.
[127] Moody N R, Thompson A W. Hydrogen effects on material behavior[R]. Warrendale, PA (USA); The Metallurgical Society Inc., 1990.
[128] Kamoutsi H, Haidemenopoulos G N, Bontozoglou V, et al. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024[J]. Corrosion Science, 2006, 48(5): 1209-1224.
[129] Lee J A, Woods S. Hydrogen embrittlement: NASA/TM-2016–218602 [R]. Washington D.C.: Na-tional Aeronautics and Space Administration, 2016.
[130] Brewer G D. Hydrogen aircraft technology[M]. Flori-da: CRC Press, 2017.
[131] 李健,刘莹,田静等.军用小涵道比发动机的飞发安装连接研究[J].航空发动机,2015,41(05):81-85.
[132] 赵长辉,卢黎波,李文丽等.现代喷气战斗机的发动机安装设计[J].航空工程进展,2016,7(02):241-252.
[133] 刘亚军,刘道庆.浅析现代战斗机发动机安装连接形式[J].飞机设计,2010,30(05):27-30.
[134] Onorato G, Proesmans P, Hoogreef M F M. Assess-ment of hydrogen transport aircraft: Effects of fuel tank integration[J]. CEAS Aeronautical Journal, 2022, 13(4): 813-845.
[135] Singiresu S. Rao, 李欣业,张明路.机械振动[M].北京:清华大学出版社.2009.
[136] 袁海飞. 装机条件下涡轴发动机的振动传递与隔振方法研究[D].南京:南京航空航天大学,2017.
[137] 葛祖德,姚起杭.航空用新型减振器[J].应用力学学报,2001,18(Z1):110-113.
[138] 任子初. 空间微振动高效减振用阻尼硅橡胶的制备及性能研究[D].北京:中国运载火箭技术研究院,2021.
[139] 朱清玉,韩清凯,王维民等.航空发动机多支撑附件系统振动传递路径分析[J/OL].航空学报:1-15[2023-11-10]. http://kns.cnki.net/kcms/detail/11.1929.V.20230317.1418.014.html.
[140] 涂春潮,陈子昂,张雪颂等.惯性导航用氟硅橡胶减振器振动性能研究[J].兵器材料科学与工程,2023,46(05):131-136.
[141] 王婧,韩秀峰,廉一龙等.含氟橡胶的研究进展及在航空发动机中的应用[J].合成橡胶工业,2021,44(02):150-157.
[142] 刘小川,王彬文,白春玉等.航空结构冲击动力学技术的发展与展望[J].航空科学技术,2020,31(03):1-14.
[143] 刘小川,郭军,孙侠生等.民机机身段和舱内设施坠撞试验及结构适坠性评估[J].航空学报,2013,34(09):2130-2140.
[144] 张欣玥,惠旭龙,刘小川等.典型金属民机机身结构坠撞特性试验[J].航空学报,2022,43(06):368-381.
[145] 牟浩蕾,解江,冯振宇等.大型运输类飞机典型机身框段坠撞特性分析[J].航空学报,2023,44(09):232-246.
[146] 兰亮云,孔祥伟,邱春林等.基于多尺度力学实验的氢脆现象的最新研究进展[J].金属学报,2021,57(07):845-859..
[147] Gangloff R P, Somerday B P. G. Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterisation and effects on particular alloy classes[M]. Elsevier, 2012.
[148] 李依依,范存淦,戎利建等.抗氢脆奥氏体钢及抗氢铝[J].金属学报,2010,46(11):1335-1346.
[149] 郭志钒,巨永林.低温液氢储存的现状及存在问题[J].低温与超导,2019,47(06):21-29.
[150] 李星国.氢气制备和储运的状况与发展[J].科学通报,2022,67(Z1):425-436.
[151] 陈晓露,刘小敏,王娟等.液氢储运技术及标准化[J].化工进展,2021,40(09):4806-4814.
[152] 李敬法,李建立,王玉生等.氢能储运关键技术研究进展及发展趋势探讨[J].油气储运,2023,42(08):856-871.
[153] 蒲亮,余海帅,代明昊等.氢的高压与液化储运研究及应用进展[J].科学通报,2022,67(19):2172-2191.
[154] 张振扬,解辉.液氢的制、储、运技术现状及分析[J].可再生能源,2023,41(03):298-305.
[155] 曹湘洪,魏志强.氢能利用安全技术研究与标准体系建设思考[J].中国工程科学,2020,22(05):144-151.
[156] 郑津洋,刘自亮,花争立等.氢安全研究现状及面临的挑战[J].安全与环境学报,2020,20(01):106-115.
[157] 郑津洋,张俊峰,陈霖新等.氢安全研究现状[J].安全与环境学报,2016,16(06):144-152.
[158] 王登,吕洪,沈亚皓等.液氢安全研究现状[J].浙江电力,2023,42(05):3-10.
[159] Aziz M. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917.
[160] Wei R, Lan J, Lian L, et al. A bibliometric study on research trends in hydrogen safety[J]. Process Safety and Environmental Protection, 2022, 159: 1064-1081.
[161] Abohamzeh E, Salehi F, Sheikholeslami M, et al. Re-view of hydrogen safety during storage, transmission, and applications processes[J]. Journal of Loss Pre-vention in the Process Industries, 2021, 72: 104569.
[162] 王青松,孙金华,姚礼殷. 液氢泄漏主要灾害形式分析[C]//中国可再生能源学会氢能专业委员会.第七届全国氢能学术会议论文集.武汉理工大学学报编辑部,2006:301-306.
[163] Ods?ter L H, Skarsv?g H L, Aursand E, et al. Liquid hydrogen spills on water—risk and consequences of rapid phase transition[J]. Energies, 2021, 14(16): 4789.
[164] Astbury G R, Hawksworth S J. Spontaneous ignition of hydrogen leaks: a review of postulated mecha-nisms[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2178-2185.
[165] Mogi T, Wada Y, Ogata Y, et al. Self-ignition and flame propagation of high-pressure hydrogen jet dur-ing sudden discharge from a pipe[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5810-5816.
[166] Yamada E, Kitabayashi N, Hayashi A K, et al. Mech-anism of high-pressure hydrogen auto-ignition when spouting into air[J]. international journal of hydrogen energy, 2011, 36(3): 2560-2566.
[167] Houf W G, Evans G H, Schefer R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen En-ergy, 2009, 34(14): 5961-5969.
[168] Schefer R W, Houf W G, Williams T C, et al. Charac-terization of high-pressure, underexpanded hydro-gen-jet flames[J]. International journal of hydrogen energy, 2007, 32(12): 2081-2093.
[169] Molkov V, Saffers J B. Hydrogen jet flames[J]. Inter-national journal of hydrogen energy, 2013, 38(19): 8141-8158.
[170] Mogi T, Horiguchi S. Experimental study on the haz-ards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 45-51.
[171] 邵翔宇,蒲亮,雷刚等.液氢泄漏事故中氢气可燃云团的扩散规律研究[J].西安交通大学学报,2018,52(09):102-108.
[172] 弓亮,靳开颜,杨胜男等.低温氢泄漏及射流火传播特性研究现状[J].消防科学与技术,2021,40(07):1056-1060.
[173] Grune J, Sempert K, Haberstroh H, et al. Experi-mental investigation of hydrogen-air deflagrations and detonations in semi-confined flat layers[J]. Jour-nal of Loss Prevention in the Process Industries, 2013, 26(2): 317-323.
[174] Grune J, Sempert K, Friedrich A, et al. Detonation wave propagation in semi-confined layers of hydro-gen–air and hydrogen–oxygen mixtures[J]. Interna-tional Journal of Hydrogen Energy, 2017, 42(11): 7589-7599.
[175] Vollmer K G, Ettner F, Sattelmayer T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient[J]. Combustion Science and Technology, 2012, 184(10-11): 1903-1915.
[176] Wang C J, Wen J X. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradi-ents[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7657-7663.
[177] Zhang B. The influence of wall roughness on detona-tion limits in hydrogen–oxygen mixture[J]. Combus-tion and Flame, 2016, 169: 333-339.
[178] Middha P, Ichard M, Arntzen B J. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2620-2627.
[179] 凡双玉,何田田,安刚等.液氢泄漏扩散数值模拟研究[J].低温工程,2016(06):48-53.
[180] 厉劲风,方凯,许好好等.大空间液氢射流泄漏扩散特性[J].化工学报,2022,73(11):5177-5185.
[181] J?kel C, Kelm S, Reinecke E A, et al. Validation strat-egy for CFD models describing safety-relevant sce-narios including LH2/GH2 release and the use of passive auto-catalytic recombiners[J]. International journal of hydrogen energy, 2014, 39(35): 20371-20377.
[182] 唐鑫,邵翔宇,雷刚等.液氢泄放状态对连续泄漏扩散安全性影响研究[J].低温工程,2019(04):14-20.
[183] 赵康,丁京,凡双玉等.受限空间内液氢泄漏扩散规律研究[J].低温工程,2019(05):53-58.
[184] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(04):469-477.
[185] 杨智,刘丽红,李江.氢能源产业技术标准化发展现况[J].船舶工程,2020,42(S1):39-49.
[186] Hosseini S E, Butler B. An overview of development and challenges in hydrogen powered vehicles[J]. In-ternational Journal of Green Energy, 2020, 17(1): 13-37.
[187] 王晓兵,张妍懿,郝冬等.国外主要氢能与燃料电池汽车相关标准简析[J].中国标准化,2021(06):128-133.
[188] Standard for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles: SAE J2579-2013[S]. 2013.
[189] 施文博,蔡淳名,李德威等.ISO/IEC、美日中氢能技术标准化体系比较与建议[J].化工进展,2022,41(12):6275-6284.
[190] 张灿,张明震.氢能产业标准化体系:中外比较及启示[J].科技导报,2022,40(24):38-49.