氢能客机低温液氢储罐装机环境适应性研究进展
收稿日期: 2023-11-13
修回日期: 2023-12-12
录用日期: 2024-01-08
网络出版日期: 2024-01-15
Research progress in installation environment adaptability of cryogenic liquid hydrogen tanks for hydrogen-powered aircraft
Received date: 2023-11-13
Revised date: 2023-12-12
Accepted date: 2024-01-08
Online published: 2024-01-15
近几十年来,零排放的氢能飞机再次成为备受关注的焦点,为解决全球变暖问题提供重要路径。目前,正在研发的中短程氢能窄体飞机通常采用圆柱形罐体储存液氢并将液氢储罐集成在飞机的后机身。这些储罐必须能够在其寿命周期内所遇到的各种环境条件下实现其所有预定的功能和性能。首先,对氢能飞机的发展历程进行了系统文献综述,介绍未来氢能飞机的发展趋势。其次,重点梳理了后机身液氢储罐的装机环境适应性要求,以及在储罐设计阶段需要考虑的环境因素,同时提出了后机身非增压区域和储罐的安装结构在设计时需要特别注意的方面。最后,结合现有的氢燃料电池汽车的氢安全标准体系,探讨了未来氢能飞机的氢安全标准体系架构发展,同时总结并展望了储罐对后机身环境适应性和储罐安装结构的设计要求,为氢能客机液氢储氢系统的设计提供了技术支撑。
张永杰 , 王鸿琛 , 崔博 , 周静飘 . 氢能客机低温液氢储罐装机环境适应性研究进展[J]. 航空学报, 2025 , 46(9) : 629870 -629870 . DOI: 10.7527/S1000-6893.2024.29870
In recent decades, zero-emission hydrogen-powered aircraft have once again become the focus of attention, offering an important path to solving the global warming problem. Currently, short- or medium-range hydrogen-powered narrow-body aircraft under development typically use cylindrical tanks to store liquid hydrogen and integrate the liquid hydrogen storage tanks into the rear fuselage of the aircraft. These tanks must be able to fulfill all intended functions and performance under various environmental conditions encountered during their life cycle. This paper first provides a systematic literature review of the development history and introduces the future trends of hydrogen-powered aircraft. Then, it sorts out the requirements for the installation environmental adaptability of the aft fuselage liquid hydrogen storage tank and the environmental factors to be considered in the design stage of the tank, meanwhile proposing the aspects that need special attention in the design of the non-pressurized area of the aft fuselage and the installation structure of the storage tank. Finally, combining with the existing hydrogen safety standard system for hydrogen fuel cell vehicles, it discusses the development of the hydrogen safety standard system architecture for future hydrogen-powered aircraft, and summarizes and predicts the design requirements for the environmental adaptability of the tanks in the aft fuselage and the installation structure of the tanks to provide technical support for the design of the liquid hydrogen storage system of hydrogen-powered aircraft.
1 | 纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术, 2022, 33(12): 1-11. |
JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under carbon peaking and carbon neutrality goals[J]. Aeronautical Science & Technology, 2022, 33(12): 1-11 (in Chinese). | |
2 | 韩玉琪, 袁善虎, 王飒. “碳中和”目标牵引下的航空动力发展分析[J]. 航空动力, 2021(6): 28-30. |
HAN Y Q, YUAN S H, WANG S. Analysis to the development of aero engine to achieve carbon neutrality[J]. Aerospace Power, 2021(6): 28-30 (in Chinese). | |
3 | NG K S, FAROOQ D, YANG A D. Global biorenewable development strategies for sustainable aviation fuel production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111502. |
4 | ABRANTES I, FERREIRA A F, SILVA A, et al. Sustainable aviation fuels and imminent technologies-CO2 emissions evolution towards 2050[J]. Journal of Cleaner Production, 2021, 313: 127937. |
5 | CHIARAMONTI D. Sustainable aviation fuels: The challenge of decarbonization[J]. Energy Procedia, 2019, 158: 1202-1207. |
6 | YUSAF T, FERNANDES L, TALIB A R ABU, et al. Sustainable aviation: Hydrogen is the future[J]. Sustainability, 2022, 14(1): 548. |
7 | BAUEN A, BITOSSI N, GERMAN L, et al. Sustainable aviation fuels[J]. Johnson Matthey Technology Review, 2020, 64(3): 263-278. |
8 | 韩玉琪, 王则皓, 刘英杰, 等. 通向碳中和的航空新能源动力发展路径分析[J]. 航空动力, 2022(3): 13-15. |
HAN Y Q, WANG Z H, LIU Y J, et al. Analysis to the development path of new aerospace power leading to carbon neutrality?[J]. Aerospace Power, 2022(3): 13-15 (in Chinese). | |
9 | 张扬军, 彭杰, 钱煜平, 等. 氢能航空的关键技术与挑战[J]. 航空动力, 2021(1): 20-23. |
ZHANG Y J, PENG J, QIAN Y P, et al. Key technologies and challenges of hydrogen powered aviation[J]. Aerospace Power, 2021(1): 20-23 (in Chinese). | |
10 | 李开省. 碳中和目标下航空能源转型研究[J]. 航空科学技术, 2021, 32(9): 1-11. |
LI K S. Research on the transformation of aviation energy under the goal of carbon neutrality[J]. Aeronautical Science & Technology, 2021, 32(9): 1-11 (in Chinese). | |
11 | PETRESCU R V V, MACHíN A, FONTáNEZ K, et al. Hydrogen for aircraft power and propulsion?[J]. International Journal of Hydrogen Energy, 2020, 45(41): 20740-20764. |
12 | DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
13 | TROELTSCH F M, ENGELMANN M, SCHOLZ A E, et al. Hydrogen powered long haul aircraft with minimized climate impact[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
14 | MUKHOPADHAYA J, RUTHERFORD D. Performance analysis of evolutionary hydrogen-powered aircraft: ICCT white paper[R]. Washington, D.C.: International Council on Clean Transportation, 2012. |
15 | VARDON D R, SHERBACOW B J, GUAN K Y, et al. Realizing “net-zero-carbon” sustainable aviation fuel[J]. Joule, 2022, 6(1): 16-21. |
16 | YILMAZ N, ATMANLI A. Sustainable alternative fuels in aviation[J]. Energy, 2017, 140: 1378-1386. |
17 | UNDAVALLI V, GBADAMOSI OLATUNDE O B, BOYLU R, et al. Recent advancements in sustainable aviation fuels[J]. Progress in Aerospace Sciences, 2023, 136: 100876. |
18 | 曹冠杰, 王業輝, 孫小金. 氢能航空发展现状分析[J]. 航空动力, 2022(2): 29-33. |
CAO G J, WANG Y H, SUN X J. Development status of hydrogen in aviation[J]. Aerospace Power, 2022(2): 29-33 (in Chinese). | |
19 | NOJOUMI H, DINCER I, NATERER G F. Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1363-1369. |
20 | EISENHUT D, MOEBS N, WINDELS E, et al. Aircraft requirements for sustainable regional aviation?[J]. Aerospace, 2021, 8(3): 61. |
21 | BREWER G D. The prospects for liquid hydrogen fueled aircraft?[J]. International Journal of Hydrogen Energy, 1982, 7(1): 21-41. |
22 | DAHL G, SUTTROP F. Engine control and low-NO x combustion for hydrogen fuelled aircraft gas turbines[J]. International Journal of Hydrogen Energy, 1998, 23(8): 695-704. |
23 | ARAT H T, SüRER M G. State of art of hydrogen usage as a fuel on aviation[J]. European Mechanical Science, 2017, 2(1): 20-30. |
24 | CECERE D, GIACOMAZZI E, INGENITO A. A review on hydrogen industrial aerospace applications[J]. International Journal of Hydrogen Energy, 2014, 39(20): 10731-10747. |
25 | LEE D S, FAHEY D W, SKOWRON A, et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018[J]. Atmospheric Environment, 2021, 244: 117834. |
26 | BRUCE S, Temminghoff M, Hayward J, et al. Opportunities for hydrogen in commercial aviation[Z]. Canberra: Csiro, 2020. |
27 | PROESMANS P J, VOS R. Comparison of future aviation fuels to minimize the climate impact of commercial aircraft?[C]?∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
28 | KORONEOS C, DOMPROS A, ROUMBAS G, et al. Advantages of the use of hydrogen fuel as compared to kerosene?[J]. Resources, Conservation and Recycling, 2005, 44(2): 99-113. |
29 | KHANDELWAL B, KARAKURT A, SEKARAN P R, et al. Hydrogen powered aircraft: The future of air transport[J]. Progress in Aerospace Sciences, 2013, 60: 45-59. |
30 | BAHAROZU E, SOYKAN G, OZERDEM M B. Future aircraft concept in terms of energy efficiency and environmental factors[J]. Energy, 2017, 140: 1368-1377. |
31 | SCHMIDTCHEN U, BEHREND E, POHL H W, et al. Hydrogen aircraft and airport safety?[J]. Renewable and Sustainable Energy Reviews, 1997, 1(4): 239-269. |
32 | FAROKHI S. Aircraft propulsion: Cleaner, leaner, and greener[M]. New Jersey: John Wiley & Sons, 2021: 15-22. |
33 | WOEHLER S, BURSCHYK T, H??Y J, et al. Design and assessment of long range aircraft concepts with focus on fossil kerosene, sustainable aviation fuel and liquid hydrogen as energy carriers[C]?∥AIAA Aviation 2023 Forum. Reston: AIAA, 2023. |
34 | WESTENBERGER A. Liquid hydrogen fuelled aircraft-system analysis(CRYOPLANE): No. GRD1-1999-10014 [R]. Brussels: The European Commission, 2003. |
35 | SVENSSON F. Potential of reducing the environmental impact of civil subsonic aviation by using liquid hydrogen[D]. Cranfield: Cranfield University, 2005. |
36 | BAROUTAJI A, WILBERFORCE T, RAMADAN M, et al. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and Sustainable Energy Reviews, 2019, 106: 31-40. |
37 | WADDINGTON E, MERRET J M, ANSELL P J. Impact of LH2Fuel cell-electric propulsion on aircraft configuration and integration[C]?∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
38 | BICER Y, DINCER I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts?[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10722-10738. |
39 | DELROSARIO R. A future with hybrid electric propulsion systems: A NASA perspective?[C]?∥Turbine Engine Technology Symposium. 2014. |
40 | PREWITZ M, BARDENHAGEN A, BECK R. Hydrogen as the fuel of the future in aircrafts-Challenges and opportunities?[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25378-25385. |
41 | RICHTER S, BRAUN-UNKHOFF M, NAUMANN C, et al. Paths to alternative fuels for aviation[J]. CEAS Aeronautical Journal, 2018, 9(3): 389-403. |
42 | VERSTRAETE D. On the energy efficiency of hydrogen-fuelled transport aircraft[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7388-7394. |
43 | CONTRERAS A, YI?IT S, ? K ZAY, et al. Hydrogen as aviation fuel: A comparison with hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 1997, 22(10-11): 1053-1060. |
44 | NIAZ S, MANZOOR T, PANDITH A H. Hydrogen storage: Materials, methods and perspectives?[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 457-469. |
45 | WINNEFELD C, KADYK T, BENSMANN B, et al. Modelling and designing cryogenic hydrogen tanks for future aircraft applications?[J]. Energies, 2018, 11(1): 105. |
46 | RIVARD E, TRUDEAU M, ZAGHIB K. Hydrogen storage for mobility: A review[J]. Materials, 2019, 12(12): 1973. |
47 | GOMEZ A, SMITH H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis[J]. Aerospace Science and Technology, 2019, 95: 105438. |
48 | ANSELL P J. Hydrogen-electric aircraft technologies and integration: Enabling an environmentally sustainable aviation future[J]. IEEE Electrification Magazine, 2022, 10(2): 6-16. |
49 | VERSTRAETE D. Long range transport aircraft using hydrogen fuel[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14824-14831. |
50 | VERSTRAETE D, HENDRICK P, PILIDIS P, et al. Hydrogen fuel tanks for subsonic transport aircraft[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11085-11098. |
51 | VERSTRAETE D. The potential of liquid hydrogen for long range aircraft propulsion?[D]. Cranfield: Cranfield University, 2009. |
52 | SLOOP J L. Liquid hydrogen as a propulsion fuel, 1945-1959[M]. Washington, D.C.: NASA, 1978: 144-149. |
53 | BREWER G. The case for hydrogen fueled transport aircraft?[C]?∥9th Propulsion Conference. Reston: AIAA, 1973. |
54 | BREWER G, MORRIS R, DAVIS G W, et al. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 2: NASA-CR-145369-VOL-2[R]. Washington, D.C.: NASA, 1978. |
55 | BREWER G D. Advanced supersonic technology concept study: Hydrogen fueled configuration: NASA-CR-114718[R]. Washington, D.C.: NASA, 1974. |
56 | BREWER G D, MORRIS R E. Study of LH2 fueled subsonic passenger transport aircraft: NASA-CR-144935[R]. Washington, D.C.: NASA, 1976. |
57 | SECRETARIAT I. Electric, hybrid, and hydrogen aircraft-state of play?[R]. Québec:International Civil Aviation Organization, 2019. |
58 | MANIACI D. Relative performance of a liquid hydrogen-fueled commercial transport[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
59 | DAGGETT D L, HENDRICKS R C, WALTHER R, et al. Alternate fuels for use in commercial aircraft: NASA/TM-2008-214833?[R]. Washington, D.C.: NASA, 2008. |
60 | DERWENT R, SIMMONDS P, O’?DOHERTY S, et al. Global environmental impacts of the hydrogen economy[J]. International Journal of Nuclear Hydrogen Production and Applications, 2006, 1(1): 57. |
61 | JANI? M. Greening commercial air transportation by using liquid hydrogen (LH2) as a fuel[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16426-16441. |
62 | SVENSSON F, HASSELROT A, MOLDANOVA J. Reduced environmental impact by lowered cruise altitude for liquid hydrogen-fuelled aircraft?[J]. Aerospace Science and Technology, 2004, 8(4): 307-320. |
63 | ANDREWS J, SHABANI B. Re-envisioning the role of hydrogen in a sustainable energy economy?[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1184-1203. |
64 | PONATER M, PECHTL S, SAUSEN R, et al. Potential of the cryoplane technology to reduce aircraft climate impact: A state-of-the-art assessment?[J]. Atmospheric Environment, 2006, 40(36): 6928-6944. |
65 | KLUG H G, FAASS R. CRYOPLANE: Hydrogen fuelled aircraft—Status and challenges[J]. Air & Space Europe, 2001, 3(3-4): 252-254. |
66 | YUSAF T, FAISAL MAHAMUDE A S, KADIRGAMA K, et al. Sustainable hydrogen energy in aviation-A narrative review?[J]. International Journal of Hydrogen Energy, 2024, 52: 1026-1045. |
67 | LIN C S, VAN DRESAR N T, HASAN M M. Pressure control analysis of cryogenic storage systems?[J]. Journal of Propulsion and Power, 2004, 20(3): 480-485. |
68 | ADLER E J, MARTINS J R R A. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts?[J]. Progress in Aerospace Sciences, 2023, 141: 100922. |
69 | 宋薇薇, 杨凤田, 项松, 等. 氢能飞机研制进展及产业化前景分析[J]. 中国工程科学, 2023, 25(5): 192-201. |
SONG W W, YANG F T, XIANG S, et al. Development progress and industrialization prospect of hydrogen-powered aircraft[J]. Strategic Study of CAE, 2023, 25(5): 192-201 (in Chinese). | |
70 | KRAMER D. Hydrogen-powered aircraft may be getting a lift[J]. Physics Today, 2020, 73(12): 27-29. |
71 | BORETTI A. Progress of hydrogen subsonic commercial aircraft[J]. Frontiers in Energy Research, 2023, 11: 1195033. |
72 | SKY C. Hydrogen-powered aviation: A fact-based study of hydrogen technology, economics, and climate impact by 2050[Z]. Luxembourg: Publications Office of the European Union, 2020. |
73 | BROUCKAERT J F, MIRVILLE F, PHUAH K, et al. Clean sky research and demonstration programmes for next-generation aircraft engines?[J]. The Aeronautical Journal, 2018, 122(1254): 1163-1175. |
74 | 韩玉琪, 王则皓, 付玉. 欧盟清洁航空计划分析[J]. 航空动力, 2023(2): 28-30. |
HAN Y Q, WANG Z H, FU Y. Analysis of European Union’?s clean aviation program?[J]. Aerospace Power, 2023(2): 28-30 (in Chinese). | |
75 | DEBNEY D, BEDDOES S, FOSTER M, et al. Zero-carbon emission aircraft concepts: FZO-AIN-REP-0007 [R]. Cranfield: Aerospace Technology Institute, 2022. |
76 | 李明, 刘金超. 英国零碳飞行氢动力技术发展路线图[J]. 航空动力, 2022(3): 28-32. |
LI M, LIU J C. Analysis to hydrogen gas turbine roadmap and thrust generation of FlyZero?[J]. Aerospace Power, 2022(3): 28-32 (in Chinese). | |
77 | 王翔宇. 英国零碳飞行发展愿景分析[J]. 航空动力, 2022(3): 24-27. |
WANG X Y. Analysis to the development vision of FlyZero?[J]. Aerospace Power, 2022(3): 24-27 (in Chinese). | |
78 | FAN L X, TU Z K, CHAN S H. Recent development of hydrogen and fuel cell technologies: A review[J]. Energy Reports, 2021, 7: 8421-8446. |
79 | FORSBERG C W. Future hydrogen markets for large-scale hydrogen production systems[J]. International Journal of Hydrogen Energy, 2007, 32(4): 431-439. |
80 | THOMAS J M, EDWARDS P P, DOBSON P J, et al. Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells[J]. Journal of Energy Chemistry, 2020, 51: 405-415. |
81 | 罗彧. 氢能飞机蓄势待发[J]. 航空动力, 2022(2): 34-38. |
LUO Y. Hydrogen aircraft is ready to fly[J]. Aerospace Power, 2022(2): 34-38 (in Chinese). | |
82 | HOELZEN J, SILBERHORN D, ZILL T, et al. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure-Review and research gaps[J]. International Journal of Hydrogen Energy, 2022, 47(5): 3108-3130. |
83 | PONTIKA E, ZAGHARI B, ZHOU T Z, et al. Integrated mission performance analysis of novel propulsion systems: Analysis of a fuel cell regional aircraft retrofit[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
84 | VOTH V, LüBBE S M, SCH?FER M, et al. Functional approach to a fuel cell thermal management system in safety-critical applications[C]∥AIAA Aviation 2023 Forum. Reston: AIAA, 2023. |
85 | 韩玉琪, 王则皓, 谭米. 2022航空氢动力研发进展[J]. 航空动力, 2023(2): 13-16. |
HAN Y Q, WANG Z H, TAN M. Development progress of hydrogen powered aviation in 2022[J]. Aerospace Power, 2023(2): 13-16 (in Chinese). | |
86 | SHANK K, THOMAS B, AGARWAL R K. Insulation design for liquid cryogenic hydrogen fuel tanks for hydrogen powered aircraft[C]∥AIAA Aviation 2023 Forum. Reston: AIAA, 2023. |
87 | MILLIS M G, TORNABENE R T, JURNS J M, et al. Hydrogen fuel system design trades for high-altitude long-endurance remotely-operated aircraft: NASA/TM-2009-215521 [R]. Washington, D.C.: NASA, 2009. |
88 | MANTZAROUDIS V K, THEOTOKOGLOU E E. Computational analysis of liquid hydrogen storage tanks for aircraft applications[J]. Materials, 2023, 16(6): 2245. |
89 | REN J W, MUSYOKA N, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review[J]. International Journal of Hydrogen Energy, 2017, 42: 289-311. |
90 | QIU Y N, YANG H, TONG L G, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101. |
91 | HUETE J, PILIDIS P. Parametric study on tank integration for hydrogen civil aviation propulsion?[J]. International Journal of Hydrogen Energy, 2021, 46(74): 37049-37062. |
92 | MILLS G L, BUCHHOLTZ B, OLSEN A. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft[C]∥Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC. 2012. |
93 | COLOZZA A J, KOHOUT L. Hydrogen storage for aircraft applications overview: NASA/CR-2002-211867 [R]. Washington, D.C.: NASA, 2023. |
94 | SILBERHORN D, ATANASOV G, WALTHER J N, et al. Assessment of hydrogen fuel tank integration at aircraft level[C]∥Deutscher Luft-und Raumfahrtkongress. 2019. |
95 | M?LLER K T, JENSEN T R, AKIBA E, et al. Hydrogen-A sustainable energy carrier[J]. Progress in Natural Science: Materials International, 2017, 27(1): 34-40. |
96 | 李尧. 飞机温度环境适应性要求分析和确定技术探讨[J]. 装备环境工程, 2008, 5(6): 60-64. |
LI Y. Analysis and confirmation techniques for requirements of temperature environmental worthiness of aircraft[J]. Equipment Environmental Engineering, 2008, 5(6): 60-64 (in Chinese). | |
97 | Radio Technical Commission for Aeronautics Special Committee135. Environmental conditions and test procedures for airborne equipment: DO-160G [S]. Washington,D.C.: Radio Technical Commission for Aeronautics, 2010. |
98 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第2部分: 温度和高度试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment on civil aircraft. Part 2: Temperature and altitude tests: [S]. Beijing: Ministry of Industry and Information Technology of the People’?s Republic of China, 2014 (in Chinese). | |
99 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第3部分: 温度变化试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment of civil aircraft. Part 3: Temperature change test: [S]. Beijing: Ministry of Industry and Information Technology of the People’?s Republic of China, 2014 (in Chinese). | |
100 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第4部分: 湿热试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment of civil aircraft. Part 4: Damp heat test: [S]. Beijing: Ministry of Industry and Information Technology of the People’s Republic of China, 2014 (in Chinese). | |
101 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第6部分: 振动试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test procedures for airborne equipment of civil airplane. Part 6: Vibration test: [S]. Beijing: Ministry of Industry and Information Technology of the People’s Republic of China, 2014 (in Chinese). | |
102 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第5部分: 飞行冲击和坠撞安全试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment of civil airplane. Part 5: Operational shocks and crash safety test: [S]. Beijing: Ministry of Industry and Information Technology of the People’?s Republic of China, 2014 (in Chinese). | |
103 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第13部分: 结冰试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment of civil airplane. Part 13: Icing test: ?[S]. Beijing: Ministry of Industry and Information Technology of the People’s Republic of China, 2014 (in Chinese). | |
104 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第7部分: 爆炸试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment of civil airplane. Part 7: Explosive atmosphere test: [S]. Beijing: Ministry of Industry and Information Technology of the People’?s Republic of China, 2014 (in Chinese). | |
105 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法. 第14部分: 防火、可燃性试验: [S]. 北京: 中华人民共和国工业和信息化部, 2014. |
Ministry of Industry and Information Technology of the People’?s Republic of China. Environmental conditions and test methods for airborne equipment of civil airplane. Part 14: Fire fammability test: [S]. Beijing: Ministry of Industry and Information Technology of the People’s Republic of China, 2014 (in Chinese). | |
106 | ISO. Basic considerations for the safety of hydrogen systems: [S]. Geneva: ISO, 2015. |
107 | SAE. EUROCAE/SAE WG80/AE-7AFC Hydrogen fuel cells aircraft fuel cell safety guidelines: SAE AIR6464-2020 [S]. Warrendale, PA: SAE, 2020. |
108 | BEESON H, WOODS S. Guide for hydrogen hazards analysis on components and systems: NASMTM-2003-212059[R]. Washington, D.C.: NASA, 2003. |
109 | 冯文, 王淑娟, 倪维斗, 等. 氢能的安全性和燃料电池汽车的氢安全问题[J]. 太阳能学报, 2003, 24(5): 677-682. |
FENG W, WANG S J, NI W D, et al. The safety of hydrogen energy and fuel cell vehicles[J]. Acta Energiae Solaris Sinica, 2003, 24(5): 677-682 (in Chinese). | |
110 | DRELL I L, BELLES F E. Survey of hydrogen combustion properties: NACA-TR-1383[R]. Washington, D.C.: NACA, 1957. |
111 | AIAA. Guide to safety of hydrogen and hydrogen systems: [S]. Reston: AIAA, 2017. |
112 | 国家市场监督管理总局. 燃料电池电动汽车 安全要求: [S]. 北京: 中国标准出版社, 2020. |
Standardization Administration of the People’s Republic of China. Fuel cell electric vehicles-Safety requirements: ?[S]. Beijing: Standards Press of China, 2020 (in Chinese). | |
113 | UNECE. Global technical regulation concerning the hydrogen and fuel cell vehicles:UN GTR No. 13[R]. Geneva: UNECE, 2013. |
114 | ISO. Hydrogen detection apparatus-Stationary applications: [S]. Geneva: ISO, 2010. |
115 | 张振东. 氢气传感器及其检测技术[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHANG Z D. Hydrogen sensor and its detection technology[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
116 | 张颖, 宿禹祺, 陈俊帅, 等. 氢气传感器研究的进展与展望[J]. 科学通报, 2023, 68(): 204-219. |
ZHANG Y, SU Y Q, CHEN J S, et al. Progress and prospects of research on hydrogen sensors?[J]. Chinese Science Bulletin, 2023, 68(Sup 1): 204-219 (in Chinese). | |
117 | 张兴磊, 花榕, 陈双喜, 等. 低浓度氢气检测方法研究进展[J]. 分析仪器, 2009(5): 6-12. |
ZHANG X L, HUA R, CHEN S X, et al. Progress of research on detection methods of trace hydrogen[J]. Analytical Instrumentation, 2009(5): 6-12 (in Chinese). | |
118 | 张巍, 于德润, 徐振忠, 等. 催化燃烧氢气传感器的温度补偿研究[J]. 传感器与微系统, 2020, 39(8): 62-64. |
ZHANG W, YU D R, XU Z Z, et al. Study on temperature compensation of hydrogen sensor in catalytic combustion[J]. Transducer and Microsystem Technologies, 2020, 39(8): 62-64 (in Chinese). | |
119 | LEE E B, HWANG I S, CHA J H, et al. Micromachined catalytic combustible hydrogen gas sensor[J]. Sensors and Actuators B: Chemical, 2011, 153(2): 392-397. |
120 | ISO. Fuel cell road vehicles-Safety specifications-Protection against hydrogen hazards for vehicles fuelled with compressed hydrogen: ?[S]. Geneva: ISO, 2013. |
121 | SAE. Recommended practice for general fuel cell vehicle safety: SAE J2578_2014 ?[S]. Warrendale, PA: SAE, 2014. |
122 | 李楚灏, 刘佳. 燃料电池汽车氢泄漏检测探究[J]. 时代汽车, 2023(6): 96-98. |
LI C H, LIU J. Research on hydrogen leakage detection of fuel cell vehicles[J]. Auto Time, 2023(6): 96-98 (in Chinese). | |
123 | 安宁, 尹保军, 陈淑涵, 等. 光纤传感技术研究进展[J]. 燕山大学学报, 2023, 47(5): 441-457. |
AN N, YIN B J, CHEN S H, et al. Research progress of optical fiber sensing technology?[J]. Journal of Yanshan University, 2023, 47(5): 441-457 (in Chinese). | |
124 | SAE. Considerations for hydrogen fuel cells in airborne applications: SAE AIR 7765-2019 ?[S]. Warrendale, PA: SAE, 2019. |
125 | HOLBORN P G, INGRAM J M, BENSON C B. Modelling studies of the hazards posed by liquid hydrogen use in civil aviation?[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1226(1): 012059. |
126 | 中国民用航空局. 中国民用航空规章第25部: 运输类飞机适航标准:CCAR 25 R4-2011 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. Civil Aviation Regulations of China Part 25: Airworthiness standards for transport category aircraft: CCAR 25 R4-2011 ?[S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
127 | MOODY N, THOMPSON A W. Hydrogen effects on material behavior?[C]?∥Proceedings of the 4th International Conference on the Effect of Hydrogen on the Behavior of Materials; Moran, WY. 1989. |
128 | KAMOUTSI H, HAIDEMENOPOULOS G N, BONTOZOGLOU V, et al. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024[J]. Corrosion Science, 2006, 48(5): 1209-1224. |
129 | LEE J A, WOODS S. Hydrogen embrittlement: NASA/TM-2016-218602[R]. Washington D.C.: NASA, 2016. |
130 | BREWER G D. Hydrogen aircraft technology[M]. London: Routledge, 2017. |
131 | 李健, 刘莹, 田静, 等. 军用小涵道比发动机的飞发安装连接研究[J]. 航空发动机, 2015, 41(5): 81-85. |
LI J, LIU Y, TIAN J, et al. Research on aircraft/engine installation and connection system of low bypass ratio military engine[J]. Aeroengine, 2015, 41(5): 81-85 (in Chinese). | |
132 | 赵长辉, 卢黎波, 李文丽, 等. 现代喷气战斗机的发动机安装设计[J]. 航空工程进展, 2016, 7(2): 241-252. |
ZHAO C H, LU L B, LI W L, et al. Engine installation design of modern jet fighters[J]. Advances in Aeronautical Science and Engineering, 2016, 7(2): 241-252 (in Chinese). | |
133 | 刘亚军, 刘道庆. 浅析现代战斗机发动机安装连接形式[J]. 飞机设计, 2010, 30(5): 27-30. |
LIU Y J, LIU D Q. Analysis of installation and attachment forms of engines for modern fighters[J]. Aircraft Design, 2010, 30(5): 27-30 (in Chinese). | |
134 | ONORATO G, PROESMANS P, HOOGREEF M M. Assessment of hydrogen transport aircraft: Effects of fuel tank integration[J]. CEAS Aeronautical Journal, 2022, 13(4): 813-845. |
135 | S. RAO Singiresu. 机械振动[M]. 李欣业, 张明路, 编译. 北京: 清华大学出版社, 2009: 9-11. |
RAO S S. Mechanical vibrations[M]. LI X Y, ZHANG M L, translated. Beijing: Tsinghua University Press, 2009: 9-11 (in Chinese). | |
136 | 袁海飞. 装机条件下涡轴发动机的振动传递与隔振方法研究[D]. 南京: 南京航空航天大学, 2016. |
YUAN H F. Study on vibration transmission and vibration isolation method of turboshaft engine under installed condition[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). | |
137 | 葛祖德, 姚起杭. 航空用新型减振器[J]. 应用力学学报, 2001, 18(): 110-113. |
GE Z D, YAO Q H. The vibration isolator with high damping used in aircaft[J]. Chinese Journal of Applied Mechanics, 2001, 18(Sup 1): 110-113 (in Chinese). | |
138 | 任子初. 空间微振动高效减振用阻尼硅橡胶的制备及性能研究[D]. 北京: 中国运载火箭技术研究院, 2020. |
REN Z C. Preparation and properties of damping silicone rubber for high-efficiency vibration reduction of space micro-vibration[D]. Beijing: China Academy of Launch Vehicle Technology, 2020 (in Chinese). | |
139 | 朱清玉, 韩清凯, 王维民, 等. 航空发动机多支撑附件系统振动传递路径分析[J]. 航空学报, 2024, 45(4): 628303. |
ZHU Q Y, HAN Q K, WANG W M, et al. Vibration transfer path analysis of aeroengine multi-support accessory system?[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628303 (in Chinese). | |
140 | 涂春潮, 陈子昂, 张雪颂, 等. 惯性导航用氟硅橡胶减振器振动性能研究[J]. 兵器材料科学与工程, 2023, 46(5): 131-136. |
TU C C, CHEN Z A, ZHANG X S, et al. Vibration performance of fluoro-silicone rubber vibration absorber for inertial navigation[J]. Ordnance Material Science and Engineering, 2023, 46(5): 131-136 (in Chinese). | |
141 | 王婧, 韩秀峰, 廉一龙, 等. 含氟橡胶的研究进展及在航空发动机中的应用[J]. 合成橡胶工业, 2021, 44(2): 150-157. |
WANG J, HAN X F, LIAN Y L, et al. Research progress of fluorine-containing rubber and its application in aeroengine[J]. China Synthetic Rubber Industry, 2021, 44(2): 150-157 (in Chinese). | |
142 | 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望[J]. 航空科学技术, 2020, 31(3): 1-14. |
LIU X C, WANG B W, BAI C Y, et al. Progress and prospect of aviation structure impact dynamics[J]. Aeronautical Science & Technology, 2020, 31(3): 1-14 (in Chinese). | |
143 | 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. |
LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140 (in Chinese). | |
144 | 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验[J]. 航空学报, 2022, 43(6): 526234. |
ZHANG X Y, ( XI/HUI) X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234 (in Chinese). | |
145 | 牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析[J]. 航空学报, 2023, 44(9): 227512. |
MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 227512 (in Chinese). | |
146 | 兰亮云, 孔祥伟, 邱春林, 等. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859. |
LAN L Y, KONG X W, QIU C L, et al. A review of recent advance on hydrogen embrittlement phenomenon based on multiscale mechanical experiments?[J]. Acta Metallurgica Sinica, 2021, 57(7): 845-859 (in Chinese). | |
147 | GANGLOFF R P, SOMERDAY B P. Gaseous hydrogen embrittlement of materials in energy technologies[M]. Cambridge: Woodhead Publishing Ltd, 2012: 493-496. |
148 | 李依依, 范存淦, 戎利建, 等. 抗氢脆奥氏体钢及抗氢铝[J]. 金属学报, 2010, 46(11): 1335-1346. |
LI Y Y, FAN C G, RONG L J, et al. Hydrogen embrittlement resistance of austenitic alloys and aluminium alloys?[J]. Acta Metallurgica Sinica, 2010, 46(11): 1335-1346 (in Chinese). | |
149 | 郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6): 21-29. |
GUO Z F, JU Y L. Status and problems of cryogenic liquid hydrogen storage?[J]. Cryogenics & Superconductivity, 2019, 47(6): 21-29 (in Chinese). | |
150 | 李星国. 氢气制备和储运的状况与发展[J]. 科学通报, 2022, 67(): 425-436. |
LI X G. Status and development of hydrogen preparation, storage and transportation[J]. Chinese Science Bulletin, 2022, 67(Sup 1): 425-436 (in Chinese). | |
151 | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
CHEN X L, LIU X M, WANG J, et al. Technology and standardization of liquid hydrogen storage and transportation?[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814 (in Chinese). | |
152 | 李敬法, 李建立, 王玉生, 等. 氢能储运关键技术研究进展及发展趋势探讨[J]. 油气储运, 2023, 42(8): 856-871. |
LI J F, LI J L, WANG Y S, et al. Research progress and development trends of key technologies for hydrogen energy storage and transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 856-871 (in Chinese). | |
153 | 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191. |
PU L, YU H S, DAI M H, et al. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation?[J]. Chinese Science Bulletin, 2022, 67(19): 2172-2191 (in Chinese). | |
154 | 张振扬, 解辉. 液氢的制、储、运技术现状及分析[J]. 可再生能源, 2023, 41(3): 298-305. |
ZHANG Z Y, XIE H. Status quo and analysis of liquid hydrogen production, storage and transportation technology?[J]. Renewable Energy Resources, 2023, 41(3): 298-305 (in Chinese). | |
155 | 曹湘洪, 魏志强. 氢能利用安全技术研究与标准体系建设思考[J]. 中国工程科学, 2020, 22(5): 144-151. |
CAO X H, WEI Z Q. Technologies for the safe use of hydrogen and construction of the safety standards system[J]. Strategic Study of CAE, 2020, 22(5): 144-151 (in Chinese). | |
156 | 郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115. |
ZHENG J Y, LIU Z L, HUA Z L, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20(1): 106-115 (in Chinese). | |
157 | 郑津洋, 张俊峰, 陈霖新, 等. 氢安全研究现状[J]. 安全与环境学报, 2016, 16(6): 144-152. |
ZHENG J Y, ZHANG J F, CHEN L X, et al. Research status in situ of hydrogen safety[J]. Journal of Safety and Environment, 2016, 16(6): 144-152 (in Chinese). | |
158 | 王登, 吕洪, 沈亚皓, 等. 液氢安全研究现状[J]. 浙江电力, 2023, 42(5): 3-10. |
WANG D, LYU H, SHEN Y H, et al. Status quo of liquid hydrogen safety research?[J]. Zhejiang Electric Power, 2023, 42(5): 3-10 (in Chinese). | |
159 | AZIZ M. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
160 | WEI R C, LAN J M, LIAN L P, et al. A bibliometric study on research trends in hydrogen safety?[J]. Process Safety and Environmental Protection, 2022, 159: 1064-1081. |
161 | ABOHAMZEH E, SALEHI F, SHEIKHOLESLAMI M, et al. Review of hydrogen safety during storage, transmission, and applications processes?[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104569. |
162 | 王青松, 孙金华, 姚礼殷. 液氢泄漏主要灾害形式分析[C]∥第七届全国氢能学术会议论文集. 2006: 301-306. |
WANG Q S, SUN J H, YAO L Y. Analysis of the main disaster forms of liquid hydrogen leakage[C]∥Proceedings of the Seventh National Hydrogen Energy Conference. 2006: 301-306 (in Chinese). | |
163 | ODS?TER L H, SKARSV?G H L, AURSAND E, et al. Liquid hydrogen spills on water: Risk and consequences of rapid phase transition[J]. Energies, 2021, 14(16): 4789. |
164 | ASTBURY G R, HAWKSWORTH S J. Spontaneous ignition of hydrogen leaks: A review of postulated mechanisms?[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2178-2185. |
165 | MOGI T, WADA Y, OGATA Y, et al. Self-ignition and flame propagation of high-pressure hydrogen jet during sudden discharge from a pipe[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5810-5816. |
166 | YAMADA E, KITABAYASHI N, HAYASHI A K, et al. Mechanism of high-pressure hydrogen auto-ignition when spouting into air[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2560-2566. |
167 | HOUF W G, EVANS G H, SCHEFER R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5961-5969. |
168 | SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093. |
169 | MOLKOV V, SAFFERS J B. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8141-8158. |
170 | MOGI T, HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 45-51. |
171 | 邵翔宇, 蒲亮, 雷刚, 等. 液氢泄漏事故中氢气可燃云团的扩散规律研究[J]. 西安交通大学学报, 2018, 52(9): 102-108. |
SHAO X Y, PU L, LEI G, et al. Investigation on the hydrogen flammable cloud dispersion in liquid hydrogen leakage accident[J]. Journal of Xi’an Jiaotong University, 2018, 52(9): 102-108 (in Chinese). | |
172 | 弓亮, 靳开颜, 杨胜男, 等. 低温氢泄漏及射流火传播特性研究现状[J]. 消防科学与技术, 2021, 40(7): 1056-1060. |
GONG L, JIN K Y, YANG S N, et al. Research status of cryogenic hydrogen release and propagation characteristic of jet fire[J]. Fire Science and Technology, 2021, 40(7): 1056-1060 (in Chinese). | |
173 | GRUNE J, SEMPERT K, HABERSTROH H, et al. Experimental investigation of hydrogen-air deflagrations and detonations in semi-confined flat layers[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 317-323. |
174 | GRUNE J, SEMPERT K, FRIEDRICH A, et al. Detonation wave propagation in semi-confined layers of hydrogen-air and hydrogen-oxygen mixtures[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7589-7599. |
175 | VOLLMER K G, ETTNER F, SATTELMAYER T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient?[J]. Combustion Science and Technology, 2012, 184(10-11): 1903-1915. |
176 | HEIDARI A, WEN J X. Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21317-21327. |
177 | ZHANG B. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture[J]. Combustion and Flame, 2016, 169: 333-339. |
178 | MIDDHA P, ICHARD M, ARNTZEN B J. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2620-2627. |
179 | 凡双玉, 何田田, 安刚, 等. 液氢泄漏扩散数值模拟研究[J]. 低温工程, 2016(6): 48-53. |
FAN S Y, HE T T, AN G, et al. Numerical simulation of liquid hydrogen leakage diffusion[J]. Cryogenics, 2016(6): 48-53 (in Chinese). | |
180 | 厉劲风, 方凯, 许好好, 等. 大空间液氢射流泄漏扩散特性[J]. 化工学报, 2022, 73(11): 5177-5185. |
LI J F, FANG K, XU H H, et al. Diffusion features of jet leakage with liquid hydrogen in large space?[J]. CIESC Journal, 2022, 73(11): 5177-5185 (in Chinese). | |
181 | J?KEL C, KELM S, REINECKE E A, et al. Validation strategy for CFD models describing safety-relevant scenarios including LH2/GH2 release and the use of passive auto-catalytic recombiners[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20371-20377. |
182 | 唐鑫, 邵翔宇, 雷刚, 等. 液氢泄放状态对连续泄漏扩散安全性影响研究[J]. 低温工程, 2019(4): 14-20, 53. |
TANG X, SHAO X Y, LEI G, et al. Influence of liquid hydrogen release state on safety of continuous leakage and diffusion[J]. Cryogenics, 2019(4): 14-20, 53 (in Chinese). | |
183 | 赵康, 丁京, 凡双玉, 等. 受限空间内液氢泄漏扩散规律研究[J]. 低温工程, 2019(5): 53-58. |
ZHAO K, DING J, FAN S Y, et al. Study on leakage and diffusion of liquid hydrogen in confined space[J]. Cryogenics, 2019(5): 53-58 (in Chinese). | |
184 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
SHAO Z G, YI B L. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477 (in Chinese). | |
185 | 杨智, 刘丽红, 李江. 氢能源产业技术标准化发展现况[J]. 船舶工程, 2020, 42(): 39-49, 419. |
YANG Z, LIU L H, LI J. The status of the development of standardization in the hydrogen energy industry[J]. Ship Engineering, 2020, 42(Sup 1): 39-49, 419 (in Chinese). | |
186 | HOSSEINI S E, BUTLER B. An overview of development and challenges in hydrogen powered vehicles[J]. International Journal of Green Energy, 2020, 17(1): 13-37. |
187 | 王晓兵, 张妍懿, 郝冬, 等. 国外主要氢能与燃料电池汽车相关标准简析[J]. 中国标准化, 2021(6): 128-133. |
WANG X B, ZHANG Y Y, HAO D, et al. Brief introduction of foreign standards on hydrogen and fuel cell vehicles[J]. China Standardization, 2021(6): 128-133 (in Chinese). | |
188 | SAE. Standard for fuel systems in fuel cell and other hydrogen vehicles: SAE J 2579-2018 ?[S]. Warrendale, PA: SAE, 2018. |
189 | 施文博, 蔡淳名, 李德威, 等. ISO/IEC、美日中氢能技术标准化体系比较与建议[J]. 化工进展, 2022, 41(12): 6275-6284. |
SHI W B, CAI C M, LI D W, et al. ISO/IEC, American, Japanese and Chinese hydrogen technical standardization system: comparison and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6275-6284 (in Chinese). | |
190 | 张灿, 张明震. 氢能产业标准化体系: 中外比较及启示[J]. 科技导报, 2022, 40(24): 38-49. |
ZHANG C, ZHANG M Z. Hydrogen energy industry standardization system: Comparison and insights from China and abroad?[J]. Science & Technology Review, 2022, 40(24): 38-49 (in Chinese). |
/
〈 |
|
〉 |