氢能客机低温液氢储罐的装机环境适应性分析研究进展-氢能飞行器技术专刊

  • 张永杰 ,
  • 王鸿琛 ,
  • 崔博 ,
  • 周静飘
展开
  • 西北工业大学

收稿日期: 2023-11-13

  修回日期: 2024-01-11

  网络出版日期: 2024-01-15

基金资助

国家自然科学基金

Research progress in the analysis of the installed environment adaptability of cryogenic liquid hydrogen tanks for hydrogen-powered aircraft

  • ZHANG Yong-Jie ,
  • WANG Hong-Chen ,
  • CUI Bo ,
  • ZHOU Jing-Piao
Expand

Received date: 2023-11-13

  Revised date: 2024-01-11

  Online published: 2024-01-15

摘要

近几十年来,零排放的氢能飞机再次成为备受关注的焦点,为解决全球变暖问题提供重要路径。目前,正在研发的中短程氢能窄体飞机通常采用圆柱形罐体储存液氢并将液氢储罐集成在飞机的后机身。这些储罐必须能够在其寿命周期内所遇到的各种环境条件下实现其所有预定的功能和性能。首先,本文对氢能飞机的发展历程进行了系统的文献综述,介绍未来氢能飞机的发展趋势。其次,重点梳理了后机身液氢储罐的装机环境适应性要求,以及在储罐设计阶段需要考虑的环境因素,同时提出了后机身非增压区域和储罐的安装结构在设计时需要特别注意的方面。最后,结合现有的氢燃料电池汽车的氢安全标准体系,探讨了未来氢能飞机的氢安全标准体系架构发展,同时总结并展望了储罐对后机身环境适应性和储罐安装结构的设计要求,为氢能客机液氢储氢系统的设计提供了技术支撑。

本文引用格式

张永杰 , 王鸿琛 , 崔博 , 周静飘 . 氢能客机低温液氢储罐的装机环境适应性分析研究进展-氢能飞行器技术专刊[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.29870

Abstract

In recent decades, zero-emission hydrogen-powered aircraft have once again become the focus of much attention, offering an important path to solving the global warming problem. Currently, short- or medium-range hydrogen-powered narrow-body aircraft under development typically use cylindrical tanks to store liquid hydrogen and integrate the liquid hydrogen storage tanks into the rear fuselage of the aircraft. These tanks must be able to fulfill all their intended functions and performances under various environmental conditions encountered during their life cycle. First, this paper provides a systematic literature review of the development history of hydrogen-powered aircraft and introduces the future trends of hydrogen-powered aircraft. Secondly, it focuses on sorting out the requirements for the installed environmental adaptability of the aft fuselage liquid hydrogen storage tank and the environmental factors to be considered in the design stage of the tank, and at the same time, it proposes the aspects that need special attention in the design of the non-pressurized area of the aft fuselage and the installation structure of the storage tank. Finally, combining with the existing hydrogen safety standard system for hydrogen fuel cell vehicles, the development of the hydrogen safety standard system architecture for future hydrogen-powered aircraft is dis-cussed, and the design requirements for the environmental adaptability of the tanks to the aft fuselage and the installation structure of the tanks are summarized and prospected to provide technical support for the design of the liquid hydrogen storage system of hydrogen-powered aircrafts.

参考文献

[1] 纪宇晗,孙侠生,俞笑等.双碳战略下的新能源航空发展展望[J].航空科学技术,2022,33(12):1-11.
[2] 韩玉琪,袁善虎,王飒.“碳中和”目标牵引下的航空动力发展分析[J].航空动力,2021(06):28-30.
[3] Ng K S, Farooq D, Yang A. Global biorenewable de-velopment strategies for sustainable aviation fuel production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111502.
[4] Abrantes I, Ferreira A F, Silva A, et al. Sustainable aviation fuels and imminent technologies-CO2 emis-sions evolution towards 2050[J]. Journal of Cleaner Production, 2021, 313: 127937.
[5] Chiaramonti D. Sustainable aviation fuels: the chal-lenge of decarbonization[J]. Energy Procedia, 2019, 158: 1202-1207.
[6] Yusaf T, Fernandes L, Abu Talib A R, et al. Sustaina-ble aviation—Hydrogen is the future[J]. Sustainability, 2022, 14(1): 548.
[7] Bauen A, Bitossi N, German L, et al. Sustainable Avi-ation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in avia-tion[J]. Johnson Matthey Technology Review, 2020, 64(3): 263-278.
[8] 韩玉琪,王则皓,刘英杰等.通向碳中和的航空新能源动力发展路径分析[J].航空动力,2022(03):13-15.
[9] 张扬军,彭杰,钱煜平等.氢能航空的关键技术与挑战[J].航空动力,2021(01):20-23.
[10] 李开省.碳中和目标下航空能源转型研究[J].航空科学技术,2021,32(09):1-11.
[11] Petrescu R V V, Machin A, Fontanez K, et al. Hydro-gen for aircraft power and propulsion[J]. international journal of hydrogen energy, 2020, 45(41): 20740-20764.
[12] Dawood F, Anda M, Shafiullah G M. Hydrogen pro-duction for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869.
[13] Troeltsch F M, Engelmann M, Scholz A E, et al. Hy-drogen powered long haul aircraft with minimized climate impact[C]//AIAA Aviation 2020 forum. 2020: 2660.
[14] Mukhopadhaya J, Rutherford D. Performance analy-sis of evolutionary hydrogen-powered aircraft[J]. ICCT white paper, 2022.
[15] Vardon D R, Sherbacow B J, Guan K, et al. Realizing “net-zero-carbon” sustainable aviation fuel[J]. Joule, 2022, 6(1): 16-21.
[16] Yilmaz N, Atmanli A. Sustainable alternative fuels in aviation[J]. Energy, 2017, 140: 1378-1386.
[17] Undavalli V, Olatunde O B G, Boylu R, et al. Recent advancements in sustainable aviation fuels[J]. Pro-gress in Aerospace Sciences, 2023, 136: 100876.
[18] 曹冠杰,王業輝,孫小金.氢能航空发展现状分析[J].航空动力,2022(02):29-33.
[19] Nojoumi H, Dincer I, Naterer G F. Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion[J]. International journal of hydrogen energy, 2009, 34(3): 1363-1369.
[20] Eisenhut D, Moebs N, Windels E, et al. Aircraft re-quirements for sustainable regional aviation[J]. Aero-space, 2021, 8(3): 61.
[21] Brewer G D. The prospects for liquid hydrogen fueled aircraft[J]. International journal of hydrogen energy, 1982, 7(1): 21-41.
[22] Dahl G, Suttrop F. Engine control and low-NOx com-bustion for hydrogen fuelled aircraft gas turbines[J]. International Journal of Hydrogen Energy, 1998, 23(8): 695-704.
[23] Sürer M G, Arat H T. State of art of hydrogen usage as a fuel on aviation[J]. European Mechanical Science, 2018, 2(1): 20-30.
[24] Cecere D, Giacomazzi E, Ingenito A. A review on hydrogen industrial aerospace applications[J]. Inter-national journal of hydrogen energy, 2014, 39(20): 10731-10747.
[25] Lee D S, Fahey D W, Skowron A, et al. The contribu-tion of global aviation to anthropogenic climate forc-ing for 2000 to 2018[J]. Atmospheric Environment, 2021, 244: 117834.
[26] Bruce S, Temminghoff M, Hayward J, et al. Opportu-nities for hydrogen in aviation[J]. Csiro, 2020.
[27] Proesmans P J, Vos R. Comparison of Future Aviation Fuels to Minimize the Climate Impact of Commercial Aircraft[C]//AIAA Aviation 2022 Forum. 2022: 3288.
[28] Koroneos C, Dompros A, Roumbas G, et al. Ad-vantages of the use of hydrogen fuel as compared to kerosene[J]. Resources, Conservation and Recycling, 2005, 44(2): 99-113.
[29] Khandelwal B, Karakurt A, Sekaran P R, et al. Hy-drogen powered aircraft: The future of air transport[J]. Progress in Aerospace Sciences, 2013, 60: 45-59.
[30] Baharozu E, Soykan G, Ozerdem M B. Future aircraft concept in terms of energy efficiency and environ-mental factors[J]. Energy, 2017, 140: 1368-1377.
[31] Schmidtchen U, Behrend E, Pohl H W, et al. Hydro-gen aircraft and airport safety[J]. Renewable and sus-tainable energy reviews, 1997, 1(4): 239-269.
[32] Farokhi S. Aircraft Propulsion: Cleaner, Leaner, and Greener[M]. State of New Jersey: John Wiley & Sons, 2021.
[33] Woehler S, Burschyk T, H??y J, et al. Design and Assessment of Long Range Aircraft Concepts with focus on Fossil Kerosene, Sustainable Aviation Fuel and Liquid Hydrogen as Energy Carriers[C]//AIAA AVIATION 2023 Forum. 2023: 3229.
[34] Westenberger A. Liquid hydrogen fuelled aircraft–system analysis[J]. CRYOPLANE, The European Commission, Brussels, Belgium, Report No. GRD1-1999-10014, 2003.
[35] Svensson F. Potential of reducing the environmental impact of civil subsonic aviation by using liquid hy-drogen[D]. Cranfield Campus: Cranfield University, 2005.
[36] Baroutaji A, Wilberforce T, Ramadan M, et al. Com-prehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and sustainable energy reviews, 2019, 106: 31-40.
[37] Waddington E, Merret J M, Ansell P J. Impact of LH2 fuel cell-electric propulsion on aircraft configuration and integration[C]//AIAA Aviation 2021 Forum. 2021: 2409.
[38] Bicer Y, Dincer I. Life cycle evaluation of hydrogen and other potential fuels for aircrafts[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10722-10738.
[39] DelRosario R. A future with hybrid electric propulsion systems: A NASA perspective[C]//Turbine Engine Technology Symposium. 2014 (GRC-E-DAA-TN17600).
[40] Prewitz M, Bardenhagen A, Beck R. Hydrogen as the fuel of the future in aircrafts–challenges and oppor-tunities[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25378-25385.
[41] Richter S, Braun-Unkhoff M, Naumann C, et al. Paths to alternative fuels for aviation[J]. CEAS Aeronautical Journal, 2018, 9(3): 389-403.
[42] Verstraete D. On the energy efficiency of hydrogen-fuelled transport aircraft[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7388-7394.
[43] Contreras A, Yi?it S, ?zay K, et al. Hydrogen as avia-tion fuel: a comparison with hydrocarbon fuels[J]. In-ternational Journal of Hydrogen Energy, 1997, 22(10-11): 1053-1060.
[44] Niaz S, Manzoor T, Pandith A H. Hydrogen storage: Materials, methods and perspectives[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 457-469.
[45] Winnefeld C, Kadyk T, Bensmann B, et al. Modelling and designing cryogenic hydrogen tanks for future aircraft applications[J]. Energies, 2018, 11(1): 105.
[46] Rivard E, Trudeau M, Zaghib K. Hydrogen storage for mobility: A review[J]. Materials, 2019, 12(12): 1973.
[47] Gomez A, Smith H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis[J]. Aerospace Science and Technology, 2019, 95: 105438.
[48] Ansell P J. Hydrogen-Electric Aircraft Technologies and Integration: Enabling an environmentally sus-tainable aviation future[J]. IEEE Electrification Mag-azine, 2022, 10(2): 6-16.
[49] Verstraete D. Long range transport aircraft using hy-drogen fuel[J]. International journal of hydrogen en-ergy, 2013, 38(34): 14824-14831.
[50] Verstraete D, Hendrick P, Pilidis P, et al. Hydrogen fuel tanks for subsonic transport aircraft[J]. Interna-tional journal of hydrogen energy, 2010, 35(20): 11085-11098.
[51] Verstraete D. The potential of liquid hydrogen for long range aircraft propulsion[D]. Cranfield Campus: Cranfield University, 2009.
[52] Sloop J L. Liquid hydrogen as a propulsion fuel, 1945-1959[M]. Scientific and Technical Information Office, National Aeronautics and Space Administra-tion, 1978.
[53] BREWER G. The case for hydrogen fueled transport aircraft[C]//9th Propulsion Conference. 1974: 1323.
[54] Brewer G D, Morris R E, Davis G W, et al. Study of fuel systems for LH2-fueled subsonic transport air-craft, volume 2[R]. 1978.
[55] Brewer G D. Advanced supersonic technology con-cept study: Hydrogen fueled configuration[R]. 1974.
[56] Brewer G D, Morris R E. Study of LH2 fueled sub-sonic passenger transport aircraft[R]. 1976.
[57] Secretariat I. Electric, hybrid, and hydrogen aircraft-state of play[J]. Climate Change Mitigation: Technol-ogy and Operations, 2019, 124-130.
[58] Maniaci D. Relative performance of a liquid hydro-gen-fueled commercial transport[C]//46th AIAA Aer-ospace sciences meeting and exhibit. 2008: 152.
[59] Daggett D L, Hendricks R C, Walther R, et al. Alter-nate fuels for use in commercial aircraft[R]. 2008.
[60] Derwent R, Simmonds P, O'Doherty S, et al. Global environmental impacts of the hydrogen economy[J]. International Journal of Nuclear Hydrogen Produc-tion and Applications, 2006, 1(1): 57-67.
[61] Jani? M. Greening commercial air transportation by using liquid hydrogen (LH2) as a fuel[J]. Internation-al journal of hydrogen energy, 2014, 39(29): 16426-16441.
[62] Svensson F, Hasselrot A, Moldanova J. Reduced envi-ronmental impact by lowered cruise altitude for liquid hydrogen-fuelled aircraft[J]. Aerospace Science and Technology, 2004, 8(4): 307-320.
[63] Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy[J]. Inter-national journal of hydrogen energy, 2012, 37(2): 1184-1203.
[64] Ponater M, Pechtl S, Sausen R, et al. Potential of the cryoplane technology to reduce aircraft climate im-pact: A state-of-the-art assessment[J]. Atmospheric Environment, 2006, 40(36): 6928-6944.
[65] Klug H G, Faass R. CRYOPLANE: hydrogen fuelled aircraft—status and challenges[J]. Air & Space Eu-rope, 2001, 3(3-4): 252-254.
[66] Yusaf T, Mahamude A S F, Kadirgama K, et al. Sus-tainable hydrogen energy in aviation–A narrative re-view[J]. International Journal of Hydrogen Energy [2023-11-10]. https://doi.org/10.1016/j.ijhydene.2023.02.086.
[67] Lin C S, Van Dresar N T, Hasan M M. Pressure control analysis of cryogenic storage systems[J]. Journal of propulsion and power, 2004, 20(3): 480-485.
[68] Adler E J, Martins J R R A. Hydrogen-powered air-craft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sci-ences, 2023, 141: 100922.
[69] 宋薇薇,杨凤田,项松等.氢能飞机研制进展及产业化前景分析[J].中国工程科学,2023,25(05):192-201.
[70] Kramer D. Hydrogen-powered aircraft may be getting a lift[J]. Physics Today, 2020, 73(12): 27-29.
[71] Boretti A. Progress of hydrogen subsonic commercial aircraft[J]. Frontiers in Energy Research, 2023, 11: 1195033.
[72] Aviation I H P. A fact-based study of hydrogen tech-nology, economics, and climate impact by 2050[J]. Fuel Cell and Hydrogen Joint Undertaking; IGEM: Boston, MA, USA, 2020.
[73] Brouckaert J F, Mirville F, Phuah K, et al. Clean Sky research and demonstration programmes for next-generation aircraft engines[J]. The Aeronautical Jour-nal, 2018, 122(1254): 1163-1175.
[74] 韩玉琪,王则皓,付玉.欧盟清洁航空计划分析[J].航空动力,2023(02):28-30.
[75] Debney D, Beddoes S, Foster M, et al. Zero-Carbon Emission Aircraft Concepts[R]. FlyZero report FZO-AIN-REP-0007, Aerospace Technology Institute, Mar 2022.
[76] 李明,刘金超.英国零碳飞行氢动力技术发展路线图[J].航空动力,2022(03):28-32.
[77] 王翔宇.英国零碳飞行发展愿景分析[J].航空动力,2022(03):24-27.
[78] Fan L, Tu Z, Chan S H. Recent development of hy-drogen and fuel cell technologies: A review[J]. Ener-gy Reports, 2021, 7: 8421-8446.
[79] Forsberg C W. Future hydrogen markets for large-scale hydrogen production systems[J]. International Journal of Hydrogen Energy, 2007, 32(4): 431-439.
[80] Thomas J M, Edwards P P, Dobson P J, et al. Decar-bonising energy: The developing international activi-ty in hydrogen technologies and fuel cells[J]. Journal of Energy Chemistry, 2020, 51: 405-415.
[81] 羅彧.氢能飞机蓄势待发[J].航空动力,2022(02):34-38.
[82] Hoelzen J, Silberhorn D, Zill T, et al. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure–review and research gaps[J]. Interna-tional Journal of Hydrogen Energy, 2022, 47(5): 3108-3130.
[83] Pontika E, Zaghari B, Zhou T, et al. Integrated Mis-sion Performance Analysis of Novel Propulsion Sys-tems: Analysis of a Fuel Cell Regional Aircraft Retro-fit[C]//AIAA SCITECH 2023 Forum. 2023: 0840.
[84] Voth V, Lübbe S M, Sch?fer M, et al. Functional Ap-proach to a Fuel Cell Thermal Management System in Safety-Critical Applications[C]//AIAA AVIATION 2023 Forum. 2023: 3879.
[85] 韩玉琪,王则皓,谭米.2022航空氢动力研发进展[J].航空动力,2023(02):13-16.
[86] Shank K, Thomas B, Agarwal R K. Insulation Design for Liquid Cryogenic Hydrogen Fuel Tanks for Hy-drogen Powered Aircraft[C]//AIAA AVIATION 2023 Forum. 2023: 3803.
[87] Millis M G, Tornabene R T, Jurns J M, et al. Hydrogen fuel system design trades for high-altitude long-endurance remotely-operated aircraft[R]. 2009.
[88] Mantzaroudis V K, Theotokoglou E E. Computational Analysis of Liquid Hydrogen Storage Tanks for Air-craft Applications[J]. Materials, 2023, 16(6): 2245.
[89] Ren J, Musyoka N M, Langmi H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review[J]. In-ternational journal of hydrogen energy, 2017, 42(1): 289-311.
[90] Qiu Y, Yang H, Tong L, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101.
[91] Huete J, Pilidis P. Parametric study on tank integration for hydrogen civil aviation propulsion[J]. Interna-tional Journal of Hydrogen Energy, 2021, 46(74): 37049-37062.
[92] Mills G L, Buchholtz B, Olsen A. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft[C]//AIP conference proceedings. American Institute of Physics, 2012, 1434(1): 773-780.
[93] Colozza A J, Kohout L. Hydrogen storage for aircraft applications overview[R]. 2002.
[94] Silberhorn D, Atanasov G, Walther J N, et al. Assess-ment of hydrogen fuel tank integration at aircraft lev-el[C]//Deutscher Luft-und Raumfahrtkongress. 2019.
[95] M?ller K T, Jensen T R, Akiba E, et al. Hydrogen-A sustainable energy carrier[J]. Progress in Natural Sci-ence: Materials International, 2017, 27(1): 34-40.
[96] 李尧.飞机温度环境适应性要求分析和确定技术探讨[J].装备环境工程,2008,5(06):60-64.
[97] Radio Technical Commission for Aeronautics Special Committee135. Environmental conditions and test procedures for airborne equipment: DO-160G[S]. Washington: Radio Technical Commission for Aero-nautics, 2010.
[98] HB 6167.2-2014, 民用飞机机载设备环境条件和试验方法.温度和高度试验[S]. 2014.
[99] HB 6167.3-2014, 民用飞机机载设备环境条件和试验方法.温度变化试验[S]. 2014.
[100] HB 6167.4-2014, 民用飞机机载设备环境条件和试验方法.湿热试验[S]. 2014.
[101] HB 6167.6-2014, 民用飞机机载设备环境条件和试验方法.振动试验[S]. 2014.
[102] HB 6167.5-2014, 民用飞机机载设备环境条件和试验方法.飞行冲击和坠撞安全试验[S]. 2014.
[103] HB 6167.13-2014, 民用飞机机载设备环境条件和试验方法.结冰试验[S]. 2014.
[104] HB 6167.7-2014, 民用飞机机载设备环境条件和试验方法.爆炸试验[S]. 2014.
[105] HB 6167.14-2014, 民用飞机机载设备环境条件和试验方法.指定火区的防火试验[S]. 2014.
[106] ISO. Basic considerations for the safety of hydrogen systems: ISO/TR 15916-2015[S]. 2015.
[107] EUROCAE/SAE WG80/AE-7AFC Hydrogen Fuel Cells Aircraft Fuel Cell Safety Guidelines: SAE AIR6464-2020[S]. 2020.
[108] Beeson H, Woods S. Guide for hydrogen hazards analysis on components and systems[R]. 2003.
[109] 冯文,王淑娟,倪维斗等.氢能的安全性和燃料电池汽车的氢安全问题[J].太阳能学报,2003,24(05):677-682.
[110] Drell I L, Belles F E. Survey of hydrogen combustion properties: No. NACA-TR-1383[R]. 1957.
[111] American Institute of Aeronautics and Astronautics. Guide to Safety of Hydrogen and Hydrogen Systems: ANSI/AIAA G-095A-2017[S]. 2017.
[112] 国家市场监督管理总局. 燃料电池电动汽车 安全要求:GB/T 24549-2020[S]. 2020.
[113] UN/WP. 29, Global Technical Regulation Concerning the Hydrogen and Fuel Cell Vehicles: GTR No. 13 [S]. 2023.
[114] ISO. Hydrogen detection apparatus. Stationary appli-cations: BS ISO 26142:2010[S]. 2010.
[115] 张振东. 氢气传感器及其检测技术[D].哈尔滨:哈尔滨工业大学,2013.
[116] 张颖,宿禹祺,陈俊帅等.氢气传感器研究的进展与展望[J].科学通报,2023,68(Z1):204-219.
[117] 张兴磊,花榕,陈双喜等.低浓度氢气检测方法研究进展[J].分析仪器,2009(05):6-12.
[118] 张巍,于德润,徐振忠等.催化燃烧氢气传感器的温度补偿研究[J].传感器与微系统,2020,39(08):62-64.
[119] Lee E B, Hwang I S, Cha J H, et al. Micromachined catalytic combustible hydrogen gas sensor[J]. Sen-sors and Actuators B: Chemical, 2011, 153(2): 392-397.
[120] Fuel cell road vehicles-Safety specifications-Protection against hydrogen hazards for vehicles fueled with compressed hydrogen: ISO 23273-2013[S]. 2013.
[121] Recommended Practice for General Fuel Cell Vehicle Safety: SAE J2578_2014[S]. 2014
[122] 李楚灏,刘佳.燃料电池汽车氢泄漏检测探究[J].时代汽车,2023(06):96-98.
[123] 安宁,尹保军,陈淑涵等.光纤传感技术研究进展[J].燕山大学学报,2023,47(05):441-457.
[124] Considerations for Hydrogen Fuel Cells in Airborne Applications: SAE AIR7765-2019[S]. 2019.
[125] Holborn P G, Ingram J M, Benson C B. Modelling studies of the hazards posed by liquid hydrogen use in civil aviation[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2022, 1226(1): 012059.
[126] 中国民用航空局. 中国民用航空规章 第25 部:运输类飞机适航标准:CCAR 25 R4-2011[S]. 2011.
[127] Moody N R, Thompson A W. Hydrogen effects on material behavior[R]. Warrendale, PA (USA); The Metallurgical Society Inc., 1990.
[128] Kamoutsi H, Haidemenopoulos G N, Bontozoglou V, et al. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024[J]. Corrosion Science, 2006, 48(5): 1209-1224.
[129] Lee J A, Woods S. Hydrogen embrittlement: NASA/TM-2016–218602 [R]. Washington D.C.: Na-tional Aeronautics and Space Administration, 2016.
[130] Brewer G D. Hydrogen aircraft technology[M]. Flori-da: CRC Press, 2017.
[131] 李健,刘莹,田静等.军用小涵道比发动机的飞发安装连接研究[J].航空发动机,2015,41(05):81-85.
[132] 赵长辉,卢黎波,李文丽等.现代喷气战斗机的发动机安装设计[J].航空工程进展,2016,7(02):241-252.
[133] 刘亚军,刘道庆.浅析现代战斗机发动机安装连接形式[J].飞机设计,2010,30(05):27-30.
[134] Onorato G, Proesmans P, Hoogreef M F M. Assess-ment of hydrogen transport aircraft: Effects of fuel tank integration[J]. CEAS Aeronautical Journal, 2022, 13(4): 813-845.
[135] Singiresu S. Rao, 李欣业,张明路.机械振动[M].北京:清华大学出版社.2009.
[136] 袁海飞. 装机条件下涡轴发动机的振动传递与隔振方法研究[D].南京:南京航空航天大学,2017.
[137] 葛祖德,姚起杭.航空用新型减振器[J].应用力学学报,2001,18(Z1):110-113.
[138] 任子初. 空间微振动高效减振用阻尼硅橡胶的制备及性能研究[D].北京:中国运载火箭技术研究院,2021.
[139] 朱清玉,韩清凯,王维民等.航空发动机多支撑附件系统振动传递路径分析[J/OL].航空学报:1-15[2023-11-10]. http://kns.cnki.net/kcms/detail/11.1929.V.20230317.1418.014.html.
[140] 涂春潮,陈子昂,张雪颂等.惯性导航用氟硅橡胶减振器振动性能研究[J].兵器材料科学与工程,2023,46(05):131-136.
[141] 王婧,韩秀峰,廉一龙等.含氟橡胶的研究进展及在航空发动机中的应用[J].合成橡胶工业,2021,44(02):150-157.
[142] 刘小川,王彬文,白春玉等.航空结构冲击动力学技术的发展与展望[J].航空科学技术,2020,31(03):1-14.
[143] 刘小川,郭军,孙侠生等.民机机身段和舱内设施坠撞试验及结构适坠性评估[J].航空学报,2013,34(09):2130-2140.
[144] 张欣玥,惠旭龙,刘小川等.典型金属民机机身结构坠撞特性试验[J].航空学报,2022,43(06):368-381.
[145] 牟浩蕾,解江,冯振宇等.大型运输类飞机典型机身框段坠撞特性分析[J].航空学报,2023,44(09):232-246.
[146] 兰亮云,孔祥伟,邱春林等.基于多尺度力学实验的氢脆现象的最新研究进展[J].金属学报,2021,57(07):845-859..
[147] Gangloff R P, Somerday B P. G. Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterisation and effects on particular alloy classes[M]. Elsevier, 2012.
[148] 李依依,范存淦,戎利建等.抗氢脆奥氏体钢及抗氢铝[J].金属学报,2010,46(11):1335-1346.
[149] 郭志钒,巨永林.低温液氢储存的现状及存在问题[J].低温与超导,2019,47(06):21-29.
[150] 李星国.氢气制备和储运的状况与发展[J].科学通报,2022,67(Z1):425-436.
[151] 陈晓露,刘小敏,王娟等.液氢储运技术及标准化[J].化工进展,2021,40(09):4806-4814.
[152] 李敬法,李建立,王玉生等.氢能储运关键技术研究进展及发展趋势探讨[J].油气储运,2023,42(08):856-871.
[153] 蒲亮,余海帅,代明昊等.氢的高压与液化储运研究及应用进展[J].科学通报,2022,67(19):2172-2191.
[154] 张振扬,解辉.液氢的制、储、运技术现状及分析[J].可再生能源,2023,41(03):298-305.
[155] 曹湘洪,魏志强.氢能利用安全技术研究与标准体系建设思考[J].中国工程科学,2020,22(05):144-151.
[156] 郑津洋,刘自亮,花争立等.氢安全研究现状及面临的挑战[J].安全与环境学报,2020,20(01):106-115.
[157] 郑津洋,张俊峰,陈霖新等.氢安全研究现状[J].安全与环境学报,2016,16(06):144-152.
[158] 王登,吕洪,沈亚皓等.液氢安全研究现状[J].浙江电力,2023,42(05):3-10.
[159] Aziz M. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917.
[160] Wei R, Lan J, Lian L, et al. A bibliometric study on research trends in hydrogen safety[J]. Process Safety and Environmental Protection, 2022, 159: 1064-1081.
[161] Abohamzeh E, Salehi F, Sheikholeslami M, et al. Re-view of hydrogen safety during storage, transmission, and applications processes[J]. Journal of Loss Pre-vention in the Process Industries, 2021, 72: 104569.
[162] 王青松,孙金华,姚礼殷. 液氢泄漏主要灾害形式分析[C]//中国可再生能源学会氢能专业委员会.第七届全国氢能学术会议论文集.武汉理工大学学报编辑部,2006:301-306.
[163] Ods?ter L H, Skarsv?g H L, Aursand E, et al. Liquid hydrogen spills on water—risk and consequences of rapid phase transition[J]. Energies, 2021, 14(16): 4789.
[164] Astbury G R, Hawksworth S J. Spontaneous ignition of hydrogen leaks: a review of postulated mecha-nisms[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2178-2185.
[165] Mogi T, Wada Y, Ogata Y, et al. Self-ignition and flame propagation of high-pressure hydrogen jet dur-ing sudden discharge from a pipe[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5810-5816.
[166] Yamada E, Kitabayashi N, Hayashi A K, et al. Mech-anism of high-pressure hydrogen auto-ignition when spouting into air[J]. international journal of hydrogen energy, 2011, 36(3): 2560-2566.
[167] Houf W G, Evans G H, Schefer R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen En-ergy, 2009, 34(14): 5961-5969.
[168] Schefer R W, Houf W G, Williams T C, et al. Charac-terization of high-pressure, underexpanded hydro-gen-jet flames[J]. International journal of hydrogen energy, 2007, 32(12): 2081-2093.
[169] Molkov V, Saffers J B. Hydrogen jet flames[J]. Inter-national journal of hydrogen energy, 2013, 38(19): 8141-8158.
[170] Mogi T, Horiguchi S. Experimental study on the haz-ards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 45-51.
[171] 邵翔宇,蒲亮,雷刚等.液氢泄漏事故中氢气可燃云团的扩散规律研究[J].西安交通大学学报,2018,52(09):102-108.
[172] 弓亮,靳开颜,杨胜男等.低温氢泄漏及射流火传播特性研究现状[J].消防科学与技术,2021,40(07):1056-1060.
[173] Grune J, Sempert K, Haberstroh H, et al. Experi-mental investigation of hydrogen-air deflagrations and detonations in semi-confined flat layers[J]. Jour-nal of Loss Prevention in the Process Industries, 2013, 26(2): 317-323.
[174] Grune J, Sempert K, Friedrich A, et al. Detonation wave propagation in semi-confined layers of hydro-gen–air and hydrogen–oxygen mixtures[J]. Interna-tional Journal of Hydrogen Energy, 2017, 42(11): 7589-7599.
[175] Vollmer K G, Ettner F, Sattelmayer T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient[J]. Combustion Science and Technology, 2012, 184(10-11): 1903-1915.
[176] Wang C J, Wen J X. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradi-ents[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7657-7663.
[177] Zhang B. The influence of wall roughness on detona-tion limits in hydrogen–oxygen mixture[J]. Combus-tion and Flame, 2016, 169: 333-339.
[178] Middha P, Ichard M, Arntzen B J. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2620-2627.
[179] 凡双玉,何田田,安刚等.液氢泄漏扩散数值模拟研究[J].低温工程,2016(06):48-53.
[180] 厉劲风,方凯,许好好等.大空间液氢射流泄漏扩散特性[J].化工学报,2022,73(11):5177-5185.
[181] J?kel C, Kelm S, Reinecke E A, et al. Validation strat-egy for CFD models describing safety-relevant sce-narios including LH2/GH2 release and the use of passive auto-catalytic recombiners[J]. International journal of hydrogen energy, 2014, 39(35): 20371-20377.
[182] 唐鑫,邵翔宇,雷刚等.液氢泄放状态对连续泄漏扩散安全性影响研究[J].低温工程,2019(04):14-20.
[183] 赵康,丁京,凡双玉等.受限空间内液氢泄漏扩散规律研究[J].低温工程,2019(05):53-58.
[184] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(04):469-477.
[185] 杨智,刘丽红,李江.氢能源产业技术标准化发展现况[J].船舶工程,2020,42(S1):39-49.
[186] Hosseini S E, Butler B. An overview of development and challenges in hydrogen powered vehicles[J]. In-ternational Journal of Green Energy, 2020, 17(1): 13-37.
[187] 王晓兵,张妍懿,郝冬等.国外主要氢能与燃料电池汽车相关标准简析[J].中国标准化,2021(06):128-133.
[188] Standard for Fuel Systems in Fuel Cell and Other Hydrogen Vehicles: SAE J2579-2013[S]. 2013.
[189] 施文博,蔡淳名,李德威等.ISO/IEC、美日中氢能技术标准化体系比较与建议[J].化工进展,2022,41(12):6275-6284.
[190] 张灿,张明震.氢能产业标准化体系:中外比较及启示[J].科技导报,2022,40(24):38-49.
文章导航

/