综述

先进通用核心机派生发展的理念、方法及实践

  • 尹泽勇 ,
  • 李概奇 ,
  • 石建成 ,
  • 银越千
展开
  • 1.中国航发中国航空发动机研究院,北京 101304
    2.中国航发湖南动力机械研究所,株洲 412002
.E-mail: yinzy14500043@608.aecc

收稿日期: 2023-10-12

  修回日期: 2023-11-10

  录用日期: 2024-01-11

  网络出版日期: 2024-01-15

基金资助

国家科技重大专项(J2019-I-0013-0013);中国航发自主创新专项资金(ZZCX-2018-017)

Concept, method and practice of advanced versatile core engine derivative

  • Zeyong YIN ,
  • Gaiqi LI ,
  • Jiancheng SHI ,
  • Yueqian YIN
Expand
  • 1.AECC Aero Engine Academy of China,Beijing 101304,China
    2.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China

Received date: 2023-10-12

  Revised date: 2023-11-10

  Accepted date: 2024-01-11

  Online published: 2024-01-15

Supported by

National Science and Technology Major Project(J2019-I-0013-0013);Special Funds for Independent Innovation of Aero Engine Corporation of China(ZZCX-2018-017)

摘要

概述了核心机派生发展发动机的历史背景和某些典型派生发展案例。阐明了先进通用核心机及其派生发展的理念及优势,给出了先进通用核心机派生发展的基本方法,包括通用核心机流量选择、热力循环参数选择、部件构型选择、部件高效稳定工作范围确定等。此外,从市场定位、先进性确定、核心机方案设计等方面介绍了某先进通用核心机的研发历程,并阐述了由其派生发展的飞机用涡轴、涡桨、涡扇航空发动机以及车用燃气轮机产品的研制。通过实践表明了先进通用核心机派生发展的可能性及由此带来的降低风险、缩短周期、节约经费等方面的优势。

本文引用格式

尹泽勇 , 李概奇 , 石建成 , 银越千 . 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024 , 45(7) : 29713 -029713 . DOI: 10.7527/S1000-6893.2024.29713

Abstract

This paper summarizes the historical background and certain typical derivative cases of the core engine. The concept and advantages of the advanced versatile core engine and its derivative are expounded, and the basic methods for the advanced versatile core engine derivative are demonstrated, including the versatile core engine flow selection, thermal cycle parameters selection, component configuration selection, and efficient and stable working range determination of components. In addition, the development process of an advanced versatile core engine is introduced from the aspects of market positioning, determination of advanced performance, and core engine scheme design, and the development of the aircraft turboshaft engine, turboprop engine, turbofan engine and vehicle gas turbine derived from it is explained. The possibility and the advantages of the versatile core engine in reducing risk, shortening cycle-time, and saving expenditure are demonstrated by the practice of several versatile core engine derivative development.

参考文献

1 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005.
  LIAN X C, WU H. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press, 2005 (in Chinese).
2 EGBERT N, MCKAIN T. Common core development approach for Allison T406/AE family of turboshaft, turboprop, and turbofan engines[C]∥ Proceedings of the 30th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1994.
3 吴大观. 关于先进核心机研制的几点意见[J]. 燃气涡轮试验与研究200316(1): 5-6.
  WU D G. Comments on advanced core engine development[J]. Gas Turbine Experiment and Research200316(1): 5-6 (in Chinese).
4 唐海龙, 朱之丽, 罗安阳, 等. 以已有核心机为基础进行发动机系列发展的初步研究[J]. 航空动力学报200419(5): 636-639.
  TANG H L, ZHU Z L, LUO A Y, et al. A preliminary analysis of developing series of engines based on an existing core engine[J]. Journal of Aerospace Power200419(5): 636-639 (in Chinese).
5 江和甫, 黄顺洲, 周人治. “系列核心机及派生发展” 的航空发动机发展思路[J]. 燃气涡轮试验与研究200417(1): 1-5.
  JIANG H F, HUANG S Z, ZHOU R Z. Idea of aero-engine development by “core-engines in series and derivation”[J]. Gas Turbine Experiment and Research200417(1): 1-5 (in Chinese).
6 黄顺洲, 王永明, 江和甫. 核心机及其派生发动机发展的方法研究[J]. 燃气涡轮试验与研究200518(2): 1-5, 48.
  HUANG S Z, WANG Y M, JIANG H F. An investigation on core engine and its derived aero-engine development[J]. Gas Turbine Experiment and Research200518(2): 1-5, 48 (in Chinese).
7 黄顺洲, 胡骏, 江和甫. 核心机及其派生发动机发展的方法[J]. 航空动力学报200621(2): 241-247.
  HUANG S Z, HU J, JIANG H F. Investigation of core engine and derivative aero-engine development[J]. Journal of Aerospace Power200621(2): 241-247 (in Chinese).
8 欧阳辉, 朱之丽, 俞伯良. 核心机派生涡扇发动机部件及整机匹配[J]. 航空动力学报201025(9): 2057-2063.
  OUYANG H, ZHU Z L, YU B L. Components and engine matching of core-derived turbofan[J]. Journal of Aerospace Power201025(9): 2057-2063 (in Chinese).
9 欧阳辉, 朱之丽. 核心机派生匹配性能模型及其应用[J]. 燃气涡轮试验与研究201023(2): 10-14.
  OUYANG H, ZHU Z L. Performance model and application of core-derivative engine’s matching[J]. Gas Turbine Experiment and Research201023(2): 10-14 (in Chinese).
10 Propulsion Directorate Air Force Research Laboratory. Versatile core focus area[C]∥ VAATE PRDAI Pre-Proposal Conference, 2002.
11 AIAA Air Breathing Propulsion Technical Committee. The Versatile Affordable Advanced Turbine Engines (VAATE) initiative[R]. Reston: AIAA, 2006.
12 中国航发湖南动力机械研究所. 中小型涡轴与涡扇发动机通用核心机设计关键技术合作研究[R]. 株洲:中国航发湖南动力机械研究所,2005.
  ACEE Hunan Aviation Powerplant Research Institute. Cooperative research on key technology of design of versatile core engine of small-medium turboshaft and turbofan engine[R]. Zhuzhou: ACEE Hunan Aviation Powerplant Research Institute, 2005 (in Chinese).
13 尹泽勇, 曾源江, 石建成, 等. 涡轴(涡桨)/涡扇(涡喷)发动机通用核心机技术[J]. 航空动力学报200823(11): 2088-2094.
  YIN Z Y, ZENG Y J, SHI J C, et al. Versatile core engine technology for turboshaft(turboprop)/turbofan(turbojet) engines[J]. Journal of Aerospace Power200823(11): 2088-2094 (in Chinese).
14 付超, 邹正平, 刘火星, 等. 通用核心机涡轮气动设计准则[J]. 推进技术201132(2): 165-174.
  FU C, ZOU Z P, LIU H X, et al. Turbine aerodynamic design criteria of versatile core[J]. Journal of Propulsion Technology201132(2): 165-174 (in Chinese).
15 刘宝龙, 洪杰. 通用核心机转子系统结构设计技术[C]∥ 第9届全国转子动力学学术讨论会论文集, 2010: 58-62.
  LIU B L, HONG J. Structural design technology of the versatile core rotor system[C]∥ Proceedings of the 9th National Academic Conference on Rotordynamics, 2010: 58-62 (in Chinese).
16 张少锋, 陈玉春, 李夏鑫, 等. 中小型核心机派生发动机设计研究[J]. 航空工程进展201910(6): 826-835.
  ZHANG S F, CHEN Y C, LI X X, et al. Research on design of medium-small core-derived engine[J]. Advances in Aeronautical Science and Engineering201910(6): 826-835 (in Chinese).
17 尹泽勇, 米栋. 航空发动机多学科设计优化[M]. 北京: 北京航空航天大学出版社, 2015.
  YIN Z Y, MI D. Multidisciplinary design optimization of aero-engine[M]. Beijing: Beihang University Press, 2015 (in Chinese).
18 SANDS J S. Robust design methodology for common core gas turbine engines[D]. Atlanta: Georgia Institute of Technology, 2015.
19 尹泽勇, 米栋. 航空动力系统整机多学科设计优化[M]. 北京: 科学出版社, 2022.
  YIN Z Y, MI D. Multidisciplinary design optimization of aircraft power system [M]. Beijing: Science Press, 2022 (in Chinese).
20 中国航空工业发展研究中心. 通用航空发动机市场研究及发展建议[R]. 北京: 中国航空工业发展研究中心, 2016.
  Aviation Industry Development Research Center of China. General aviation engine market research and development suggestions[R]. Beijing: Aviation Industry Development Research Center of China, 2016 (in Chinese).
21 Group UK Limited Jane. Jane’s aero-engines 2021-2022[M]. Norfolk: IHSpress, 2021.
22 任继文, 高锦昌, 吴建全, 等. 俄罗斯坦克装甲车辆动力探析[J]. 车用发动机2004(4): 1-4, 42.
  REN J W, GAO J C, WU J Q, et al. Investigation on power of Russia tank and armored vehicle[J]. Vehicle Engine2004(4): 1-4, 42 (in Chinese).
23 张然治, 任继文. 国外坦克装甲车辆发动机装备现状技术水平分析和发展趋势研究[J]. 车用发动机1998(4): 1-11.
  ZHANG R Z, REN J W. Present status, technology analysis and development trend on power equipment of abroad tanks and armoured vehicles[J]. Vehicle Engine1998(4): 1-11 (in Chinese).
文章导航

/