考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计方法

  • 武天才 ,
  • 王宏伦 ,
  • 任斌 ,
  • 刘一恒 ,
  • 吴星雨 ,
  • 严国乘
展开
  • 北京航空航天大学自动化科学与电气工程学院

收稿日期: 2023-09-19

  修回日期: 2024-01-13

  网络出版日期: 2024-01-15

基金资助

国家自然科学基金;北京航空航天大学博士研究生卓越学术基金;北京航空航天大学未来空天技术学院/高等理工学院卓越研究基金;航空科学基金

Learning-based integrated fault-tolerant guidance and control method for hypersonic vehicles considering avoidance and penetration

  • WU Tian-Cai ,
  • WANG Hong-Lun ,
  • REN Bin ,
  • LIU Yi-Heng ,
  • WU Xing-Yu ,
  • YAN Guo-Cheng
Expand

Received date: 2023-09-19

  Revised date: 2024-01-13

  Online published: 2024-01-15

Supported by

National Natural Science Foundation of China;Academic Excellence Foundation of BUAA, China for PhD Students;Outstanding Research Project of Shen Yuan Honors College, BUAA;Aeronautical Science Foundation of China

摘要

针对再入过程中的禁飞区规避和拦截弹躲避问题,本文提出一种考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计方法。首先,在纵向制导中,为提升飞行器的制导性能,基于制导控制一体化设计思想,本文采用包含姿态容错控制系统在内的飞行器六自由度模型进行待飞航程的预测;针对随之产生的计算耗时问题,进一步采用深度网络进行预测环节的拟合,来提升算法的实时性;接着,在侧向制导中,为解决禁飞区规避和拦截弹躲避问题,引入扰动流体算法进行考虑威胁因素的飞行器期望航向角计算,并结合航向角误差走廊和倾侧角翻转逻辑进行侧向制导指令的求取,使飞行器具备规避与突防能力;然后,考虑到飞行环境的复杂性、飞行器再入段机动能力的差异性以及姿态容错控制系统动态特性对制导性能的影响,结合深度强化学习算法进行智能体训练,使其可根据飞行器实时状态进行扰动流体算法参数的在线决策,提升所提方法的有效性和适应能力。最后,由半物理对比仿真和蒙特卡洛仿真结果可得,所提方法可达到较强的规避、突防与制导性能。

本文引用格式

武天才 , 王宏伦 , 任斌 , 刘一恒 , 吴星雨 , 严国乘 . 考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计方法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.29607

Abstract

Aiming at the problem of no-fly zone and interceptor avoidance during reentry phase, a learning-based integrated fault-tolerant guidance and control method for hypersonic vehicles considering avoidance and penetration is proposed. The proposed method is based on the idea of separate longitudinal and lateral guidance design in traditional predic-tive correction guidance methods. First, in longitudinal guidance, to improve the guidance performance of the vehicle, based on the integrated design concept of guidance and control, the six degree of freedom model of the vehicle, in-cluding the attitude fault-tolerant control system, is adopted for predicting the range-to-go. In view of the resulting cal-culation time-consuming problem, the deep network is further used to fit the predicting process to improve the real-time performance of the algorithm. Then, in lateral guidance, to solve the problem of avoiding no-fly zone and inter-ceptor, the interfered fluid dynamical system is introduced to calculate the expected heading angle of the vehicle con-sidering the threat factors, and the heading angle error corridor and the flip logic of the bank angle are combined to obtain the command, so that the vehicle has the ability of avoidance and penetration. Then, considering the complexi-ty of flight environment, the difference of maneuvering ability of vehicle during reentry phase, and the influence of dy-namic characteristics of attitude control system on guidance performance, the deep reinforcement learning algorithm is combined to conduct agent training, so that it can make online decisions on key parameters of algorithm according to the real-time state of vehicle, and improve the effectiveness and adaptability of the proposed guidance method. Finally, the results of semi-physical comparison simulation and Monte Carlo simulation show that the proposed meth-od can achieve strong avoidance, penetration and guidance performance.

参考文献

DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehi-cle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18.
[2] WU T C, WANG H L, LIU Y H, et al. Learning-based interfered fluid avoidance guidance for hypersonic reentry vehicles with multiple constraints[J]. ISA Transactions, 2023.
[3] 王铮, 邢晓露, 闫天, 等. 高超声速飞行器突防制导的发展现状与未来发展方向[J]. 飞航导弹, 2021, (7): 18-24+67.
WANG Z, XING X L, YAN T, et al. Development sta-tus and future development direction of penetration guidance for hypersonic vehicle[J]. Aerospace Tech-nology, 2021, (7): 18-24+67 (in Chinese).
[4] ZHANG Y, ZHANG R, LI H F. Online Path Decision of No-Fly Zones Avoidance for Hypersonic Vehicles Based on a Graph Attention Network[J]. IEEE Trans-actions on Aerospace and Electronic Systems, 2023.
[5] 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报, 2020, 41(04): 656-669.
YU Y, WANG H L. Deep learning based reentry pre-dictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(04): 656-669 (in Chinese).
[6] LU P. Entry Guidance: A Unified Method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713-728.
[7] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of guidance, control, and dy-namics, 2010, 33(4): 1273-1281.
[8] CHENG L, JIANG F H, WANG Z B, et al. Multicon-strained Real-Time Entry Guidance Using Deep Neu-ral Networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 325-340.
[9] 郭建国, 梁乐成, 周敏, 等, 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器, 2023, 30(1): 1-10.
GUO J G, LIANG L C, ZHOU M, et al. Overview of Integrated Guidance and Control for Hypersonic Ve-hicles in Dive Phase[J]. Aero Weaponry, 2023, 30(1): 1-10 (in Chinese).
[10] HOU M Z, LIANG X L, DUAN G R. Adaptive block dynamic surface control for integrated missile guid-ance and autopilot[J]. Chinese Journal of Aeronautics, 2013, 26(3):741-750.
[11] LIU X D, HUANG W W, DU L F. An integrated guid-ance and control approach in three-dimensional space for hypersonic missile constrained by impact an-gles[J]. ISA Transection, 2017, 66:164-175.
[12] BAO C Y, WANG P, Tang G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535–553.
[13] YAN B B, LIU R, DAI P, et al. A rapid penetration trajectory optimization method for hypersonic vehi-cles[J]. International Journal of Aerospace Engineer-ing, 2019.
[14] SHEN Z P, Yu J L, Dong X W, et al. Penetration trajec-tory optimization for the hypersonic gliding vehicle encountering two interceptors[J]. Aerospace Science and Technology, 2022, 121: 107363.
[15] 邵会兵. 滑翔飞行器滑翔能力智能预示与多约束制导研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
SHAO H B. Gliding manoeuvrability intelligent pre-diction and multi-constrained guidance for gliding vehicles[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
[16] JORRIS T R, COBB R G. Three-Dimensional Trajec-tory Optimization Satisfying Waypoint and No-Fly Zone Constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 551-572.
[17] ZHAO D J, SONG Z Y. Reentry trajectory optimiza-tion with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronauti-ca, 2017, 137: 60-69.
[18] LIANG Z X, LIU S Y, LI Q D, et al. Lateral entry guidance with no-fly zone constraint[J]. Aerospace Science and Technology, 2017, 60: 39-47.
[19] ZHANG D, LIU L, WANG Y J. On-line reentry guid-ance algorithm with both path and no-fly zone con-straints[J]. Acta Astronautica, 2015, 117: 243-253.
[20] HU Y D, GAO C S, LI J L, et al. A novel adaptive lateral reentry guidance algorithm with complex dis-tributed no-fly zones constraints[J]. Chinese Journal of Aeronautics, 2022, 35(7): 128-143.
[21] 惠俊鹏, 汪韧, 郭继峰. 基于强化学习的禁飞区绕飞智能制导技术研究[J/OL]. 航空学报, (2023-02-07) [2023-05-11]. http://kns.cnki.net/kcms/detail/11.1929.v.20230206.1244.001.html.
HUI J P, WANG R, GUO J F. Research of intelligent guidance for no-fly zone avoidance based on rein-forcement learning [J/OL], (2023-02-07) [2023-05-11]. http://kns.cnki.net/kcms/detail/11.1929.v.20230206.1244.001.html (in Chinese).
[22] WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2021, 119: 107134.
[23] 惠俊鹏, 汪韧, 俞启东. 基于强化学习的再入飞行器“新质”走廊在线生成技术[J]. 航空学报, 2022, 43(09): 623-635.
HUI J P, WANG R, YU Q D. Research of generating new quality flight corridor for reentry aircraft based on reinforcement learning[J]. Acta Aeronautica et As-tronautica Sinica, 2022, 43(09): 623-635 (in Chinese).
[24] WU J F, WANG H L, LIU Y H, et al. Learning-based fixed-wing UAV reactive maneuver control for obsta-cle avoidance[J]. Aerospace Science and Technology, 2022, 126: 107623.
[25] CHEN Y D, WANG J N, WANG C Y, et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(2): 389-397.
[26] CHANG J, GUO Z Y, CIESLAK J, et al. Integrated guidance and control design for the hypersonic inter-ceptor based on adaptive incremental backstepping technique[J]. Aerospace Science and Technology, 2019, 89: 318-332.
[27] 吴健发, 王宏伦, 王延祥, 等. 无人机反应式扰动流体路径规划[J]. 自动化学报, 2023, 49(02): 272-287.
WU J F, WANG H L, WANG Y X, et al. UAV Reac-tive Interfered Fluid Path Planning[J]. Acta Automati-ca Sinica, 2023, 49(02): 272-287 (in Chinese).
[28] FUJIMOTO S, HOOF H V, MEGER D. Addressing function approximation error in actor-critic meth-ods[DB]. arXiv preprint:1802.09477, 2018.
[29] 包为民, 朱建文, 张洪波, 等. 高超声速飞行器全程制导方法[M]. 北京: 科学出版社, 2021: 97-106.
BAO W M, ZHU J W, ZHANG H B, et al. Full range guidance method for hypersonic vehicles[M]. Beijing: Science Press, 2021: 97-106 (in Chinese).
文章导航

/