一种基于领导-跟随策略的多无人机-多无人艇编队协同机制研究

  • 王振威 ,
  • 刘凯 ,
  • 郭健 ,
  • 刘晓鹏
展开
  • 1. 大连理工大学力学与航空航天学院
    2. 大连理工大学
    3. 北京空天技术研究所

收稿日期: 2023-10-30

  修回日期: 2024-01-09

  网络出版日期: 2024-01-11

基金资助

自然科学基金重点项目

A Multi-UAVs and Multi-USVs Formation Cooperative Mechanism Based on Leader-followers Strategy

  • WANG Zhen-Wei ,
  • LIU Kai ,
  • GUO Jian ,
  • LIU Xiao-Peng
Expand

Received date: 2023-10-30

  Revised date: 2024-01-09

  Online published: 2024-01-11

摘要

随着无人系统技术深入的发展,无人集群系统的海空跨域协同问题已成为当前的研究热点,本文针对海空协同下的多无人机-多无人艇执行协同任务的前端协同航行问题,基于层次结构式领导-跟随策略开展了多无人机-多无人艇编队协同机制研究。本文首先建立了无人系统跨域集群编队运动模型,以描述跨域集群系统内各运动体的领导跟随关系;针对领航机-领航艇协同航迹规划问题,本文基于所建立的双层栅格化地图模型,建立了多约束条件下的航迹代价函数,并利用改进遗传算法进行求解;针对跨域集群编队协同运动控制问题,基于层次结构式Leader-Follower编队策略,设计了领航机-领航艇异构编队控制器与同构编队运动控制器,并利用模糊控制器对同构编队运动控制器进行了参数整定研究。最后,本文通过仿真实验验证了所设计的多无人机-多无人艇跨域集群协同机制的有效性。

本文引用格式

王振威 , 刘凯 , 郭健 , 刘晓鹏 . 一种基于领导-跟随策略的多无人机-多无人艇编队协同机制研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.29791

Abstract

As unmanned system technology continues to advance, the issue of cross-domain cooperation in unmanned clus-ter systems has become a current research hotspot. This paper addresses the front-end cooperative navigation problem of multiple-UAVs and multiple-USVs in a sea-air cooperation scenario. It conducts research on the multi-ple-UAVs and multiple-USVs formation cooperation mechanism based on a hierarchical leader-follower strategy. In this paper, a cross-domain cluster formation motion model is established to describe the leader-follower relation-ships among various entities within the cross-domain cluster system. Regarding the cooperative trajectory planning problem for the Leader-UAV and Leader-USV, a trajectory cost function is formulated based on the established double-layer grid map model, considering multiple constraints. An improved genetic algorithm is employed for op-timization. In the context of cross-domain cluster formation cooperative motion control, this paper proposes control strategies based on the hierarchical Leader-Follower formation strategy. It designs heterogeneous formation con-trollers for the Leader-UAV and Leader-USV and homogeneous formation motion controllers. Additionally, it con-ducts parameter tuning research for the homogeneous formation motion controllers using fuzzy controllers. Finally, through simulation experiments, this paper validates the effectiveness of the designed cross-domain cooperative mechanism for multiple-UAVs and multiple-USVs.

参考文献

[1]刘雷,刘大卫,王晓光等.无人机集群与反无人机集群发展现状及展望[J].航空学报,2022,43(S1):4-20.
LIU L,LIU D W,WANG X G,et al. Development status and outlook of UAV clusters and anti-UAV clus-ters[J]. Acta Aeronautica et Astronautica Sinica,2022,43(S1): 726908 (in Chinese).
[2]何玉庆,秦天一,王楠.跨域协同:无人系统技术发展和应用新趋势[J].无人系统技术,2021,4(04):1-13.DOI:10.19942/j.issn.2096-5915.2021.4.031.
HE Y, QIN T, WANG N. Cross-domain Collaboration: New Trends in the Development and Application of Un-manned Systems Technology[J]. Unmanned Syst. Tech-nol, 2021, 4: 1-13 (in Chinese).
[3]Wu Y, Low K H, Lv C. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target[J]. IEEE Transac-tions on Vehicular Technology, 2020, 69(6): 6782-6787.
[4]Huang T, Chen Z, Gao W, et al. A USV-UAV Coopera-tive Trajectory Planning Algorithm with Hull Dynamic Constraints[J]. Sensors, 2023, 23(4): 1845.
[5]Ke C, Chen H. Cooperative path planning for air–sea heterogeneous unmanned vehicles using search-and-tracking mission[J]. Ocean Engineering, 2022, 262: 112020.
[6]白嘉琪,王彦恺,邢昊.无人艇与四旋翼无人机固定时间异构编队控制[J].系统工程与电子技术, 2023,45(04):1152-1163.
BAI J Q, WANG Y K, XING H. Fixed-time heteroge-neous formation control of unmanned boats and quad-rotor unmanned aerial vehicle[J]. Systems Engineering and Electronics, 2023, 45(4): 1152-1163 (in Chinese).
[7]Liu, Haitao & Weng, Peijun & Tian, Xuehong & Mai, Qingqun. Distributed adaptive fixed-time formation con-trol for UAV-USV heterogeneous multi-agent systems[J]. Ocean Engineering, 2023. 267:113240.
[8]Ke C, Chen H, Xie L. Cross-Domain Fixed-Time For-mation Control for an Air-Sea Heterogeneous Unmanned System with Disturbances[J]. Journal of Marine Science and Engineering, 2023, 11(7): 1336.
[9]Shao G, Ma Y, Malekian R, et al. A novel cooperative platform design for coupled USV–UAV systems[J]. IEEE Transactions on Industrial Informatics, 2019. 15(9): 4913-4922.
[10]Lapandi? D, Persson L, Dimarogonas D V, et al. Aperi-odic communication for mpc in autonomous cooperative landing[J]. IFAC-PapersOnLine, 2021, 54(6): 113-118.
[11]Li W, Ge Y, Guan Z, et al. Synchronized Motion-Based UAV–USV Cooperative Autonomous Landing[J]. Jour-nal of Marine Science and Engineering, 2022, 10(9): 1214.
[12]崔恺,曾国奇,林伟等.一种基于图论的机场空域无人机流量控制方法[J].北京航空航天大学学报,2020,46(05):978-987.
CUI K, ZENG G Q, LIN W, et al. Flow control method for UAV airport airspace based on graph theory[J]. Jour-nal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 978-987 (in Chinese).
[13]张哲,吴剑,代冀阳等.基于改进A-Star算法的隐身无人机快速突防航路规划[J].航空学报,2020,41(07):254-264.
ZHANG Z, WU J, DAI J Y, et al. Fast penetration path planning for stealth UAV based on improved A-Star al-gorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323692 (in Chinese).
[14]Wang J, Chi W, Li C, et al. Neural RRT*: Learning-based optimal path planning[J]. IEEE Transactions on Automa-tion Science and Engineering, 2020, 17(4): 1748-1758.
[15]Han, Yuhang & Xiang, Hongyu & Cao, Jianing & Yang, Xiaohua & Pan, Nan & Huang, Linhai. (2023). Study on optimization of multi-UAV nucleic acid sample delivery paths in large cities under the influence of epidemic envi-ronment. Journal of Ambient Intelligence and Humanized Computing. 14. 1-28. 10.1007/s12652-023-04572-2.
[16]葛佳昊,刘莉,董欣心等.基于动力学RRT~*的自由漂浮空间机器人轨迹规划[J].航空学报,2021,42(01):176-185.
GE J H, LlU L, DONG X X, et al. Trajectory planning for free floating space robots based on kinodynamic RRT*[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(01): 176-185 (in Chinese).
[17]王庆禄,吴冯国,郑成辰等.基于优化人工势场法的无人机航迹规划[J].系统工程与电子技术,2023,45(05):1461-1468.
WANG Q L, WU F G, ZHENG C C, et al. UAV path planning based on optimized artificial potential field method[J]. Systems Engineering and Electronics, 2023,45(05):1461-1468 (in Chinese).
[18]张菁,何友,彭应宁等.基于神经网络和人工势场的协同博弈路径规划[J].航空学报,2019,40(03):228-238.
ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(03): 228-238 (in Chinese).
[19]刘鑫,杨霄鹏,刘雨帆等.基于GA-OCPA学习系统的无人机路径规划方法[J].航空学报,2017,38(11):287-297.
LIU X, YANG X P, LIU Y F, et al. UAV path planning based on GA-OCPA learning system[J]. Acta Aeronauti-ca et Astronautica Sinica, 2017, 38(11): 287-297 (in Chi-nese).
[20]Singh M K, Choudhary A, Gulia S, et al. Multi-objective NSGA-II optimization framework for UAV path plan-ning in an UAV-assisted WSN[J]. The Journal of Super-computing, 2023, 79(1): 832-866.
[21]魏彤,龙琛.基于改进遗传算法的移动机器人路径规划[J].北京航空航天大学学报,2020,46(04):703-711.
WEI T, LONG C. Path planning for mobile robot based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(04): 703-711 (in Chinese).
[22]李宪强,马戎,张伸等.蚁群算法的改进设计及在航迹规划中的应用[J].航空学报,2020,41(S2):213-219.
LI X Q, MA R, ZHANG S, et al. Improved design of ant colony algorithm and its application in path planning[J] Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 213-219 (in Chinese).
[23]Li G, Liu C, Wu L, et al. A mixing algorithm of ACO and ABC for solving path planning of mobile robot[J]. Ap-plied Soft Computing, 2023: 110868.
[24]Yu Z, Si Z, Li X, et al. A novel hybrid particle swarm optimization algorithm for path planning of UAVs[J]. IEEE Internet of Things Journal, 2022, 9(22): 22547-22558.
[25]LIU Y ,ZHANG X ,ZHANG Y , et al.Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach[J].Chinese Journal of Aeronautics,2019,32(06):1504-1519.
[26]阚平,姜兆亮,刘玉浩等.多植保无人机协同路径规划[J].航空学报,2020,41(04):260-270.
KAN P, JIANG Z L, LIU Y H, et al. Cooperative path planning for multi-sprayer-UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(04): 260-270 (in Chinese).
[27]Zhang M, Han Y, Chen S, et al. A multi-strategy im-proved differential evolution algorithm for UAV 3D tra-jectory planning in complex mountainous environ-ments[J]. Engineering Applications of Artificial Intelli-gence, 2023, 125: 106672.
[28]王晶,顾维博,窦立亚.基于Leader-Follower的多无人机编队轨迹跟踪设计[J].航空学报,2020,41(S1):88-98.
WANG J, GU W B, DOU L Y. Leader-Follower for-mation control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 88-98 (in Chinese).
[29]Hao C, Xiangke W, Lincheng S, et al. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach[J]. Chinese Journal of Aeronautics, 2021, 34(2): 504-515.
[30]Li J, Liu J, Huangfu S, et al. Leader-follower formation of light-weight UAVs with novel active disturbance re-jection control[J]. Applied Mathematical Modelling, 2023, 117: 577-591.
[31]杨明月,寿莹鑫,唐勇等.多四旋翼无人机编队保持与避碰控制[J].航空学报,2022,43(S1):89-99.
YANG M Y, SHOU Y X, TANG Y, et al. Multi-quadrotor UAVs formation maintenance and collision avoidance control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 89-99 (in Chinese).
[32]李正平,鲜斌.基于虚拟结构法的分布式多无人机鲁棒编队控制[J].控制理论与应用,2020,37(11):2423-2431.
LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerialvehicles based on virtual struc-ture[J]. Control Theory & Applications, 2020,37(11):2423-2431 (in Chinese).
[33]徐博,张大龙.基于量子行为鸽群优化的无人机紧密编队控制[J].航空学报, 2020,41(08):313-324.
Xu B, Zhang D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronauti-ca Sinica, 2020, 41: 313-324 (in Chinese).
[34]Tan G, Zhuang J, Zou J, et al. Coordination control for multiple unmanned surface vehicles using hybrid behav-ior-based method[J]. Ocean Engineering, 2021, 232: 109147.
[35]向乾,张晓辉,王正平等.适用无人机的小型燃料电池控制方法[J].航空学报,2021,42(03):92-103.
XIANG Q, ZHANG X H, WANG Z P, et al. Control method of small fuel cells for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(03): 92-103 (in Chinese).
[36]Pussente G A N, de Aguiar E P, Marcato A L M, et al. UAV Power Line Tracking Control Based on a Type-2 Fuzzy-PID Approach[J]. Robotics, 2023, 12(2): 60.
文章导航

/