集群智能与协同控制

基于MPCC的鸭翼尾座式垂直起降无人机轨迹跟踪控制算法

  • 曹煜琪 ,
  • 付皓然 ,
  • 高飞 ,
  • 吕熙敏
展开
  • 1.中山大学·深圳 智能工程学院,深圳 518107
    2.浙江大学 控制科学与工程学院,杭州 310007
.E-mail: lvxm6@mail.sysu.edu.cn

收稿日期: 2023-12-07

  修回日期: 2023-12-08

  录用日期: 2023-12-24

  网络出版日期: 2024-01-04

基金资助

深圳市优秀科技创新人才培养项目(RCBS20221008093104017)

Trajectory tracking control algorithm for canard⁃equipped tail⁃sitting vertical takeoff and landing UAV based on MPCC

  • Yuqi CAO ,
  • Haoran FU ,
  • Fei GAO ,
  • Ximin LYU
Expand
  • 1.School of Intelligent Systems Engineering,Shenzhen Campus of Sun Yat?sen University,Shenzhen 518107,China
    2.College of Control Science and Engineering,Zhejiang University,Hangzhou 310007,China

Received date: 2023-12-07

  Revised date: 2023-12-08

  Accepted date: 2023-12-24

  Online published: 2024-01-04

Supported by

Outstanding Science and Technology Innovation Talent Cultivation Program of Shenzhen(RCBS20221008093104017)

摘要

目前针对鸭翼尾座式垂直起降无人机(UAV)的高速轨迹跟踪控制还没有成熟的解决方案。本文设计了一种轮廓模型预测控制(MPCC)以实现无人机的轨迹跟踪控制。给定一段轨迹,此控制器能够预测并选择最优的状态和输出,使得无人机能够最大化自己的飞行速度和最小化自己离轨迹的距离。通过调整飞行速度和距离误差的权重参数,无人机能够平衡两者的侧重点,以适应不同的飞行环境。另外,本文将此优化问题进行线性化,使其转化为一个凸二次规划问题,以减小求解时间。最终通过仿真实验跟踪不同的轨迹,验证了算法的有效性。

本文引用格式

曹煜琪 , 付皓然 , 高飞 , 吕熙敏 . 基于MPCC的鸭翼尾座式垂直起降无人机轨迹跟踪控制算法[J]. 航空学报, 2023 , 44(S2) : 729950 -729950 . DOI: 10.7527/S1000-6893.2023.29950

Abstract

Currently, there is no mature solution for high-speed trajectory tracking control of canard-equipped tail-sitter vertical takeoff and landing Unmanned Aerial Vehicle (UAV). This paper proposes a Model Predictive Contouring Control (MPCC) for achieving trajectory tracking control of the UAV. Given a trajectory segment, this controller predicts and selects optimal states and outputs, allowing the UAV to maximize its flight velocity and minimize its deviation from the trajectory. By adjusting the weight parameters of flight velocity and distance error, the UAV can balance the emphasis between the two aspects to adapt to various flight environments. Additionally, this paper linearizes the optimization problem by transforming it into a convex quadratic programming problem to reduce computation time. Finally, through simulation experiments involving various trajectories, the effectiveness of the algorithm is verified.

参考文献

1 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展202213(5): 1-13.
  WANG K L, ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering202213(5): 1-13 (in Chinese).
2 王培, 李杨, 崔根, 等. 多旋翼无人机:新设计、新应用及新发展[J]. 人工智能20218(4): 78-91.
  WANG P, LI Y, CUI G, et al. Multi-rotor UAV: New design, new application and new development[J]. AI-View20218(4): 78-91 (in Chinese).
3 高洪波, 苏周, 张兆海. 垂直起降固定翼无人机发展趋势分析[J]. 科技创新导报201916(22): 232, 237.
  GAO H B, SU Z, ZHANG Z H. Development trend analysis of vertical take-off and landing fixed-wing UAV[J]. Science and Technology Innovation Herald201916(22): 232, 237 (in Chinese).
4 GU H W, LYU X M, LI Z X, et al. Coordinate descent optimization for winged-UAV design[J]. Journal of Intelligent & Robotic Systems202097(1): 109-124.
5 LYU X M, GU H W, WANG Y, et al. Design and implementation of a quadrotor tail-sitter VTOL UAV[C]∥ 2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2017: 3924-3930.
6 张宁宁, 楚红雨, 常志远, 等. 应用串级PID控制的自主搜救无人机[J]. 工业控制计算机201831(2): 52-53, 55.
  ZHANG N N, CHU H Y, CHANG Z Y, et al. Using cascade PID for autonomous searching aircraft[J]. Industrial Control Computer201831(2): 52-53, 55 (in Chinese).
7 周晓宏, 刘红军. 基于MATLAB的线性二次型最优控制器设计[J]. 长安大学学报(自然科学版)200222(3): 88-90.
  ZHOU X H, LIU H J. Design based on MATLAB for linear-quadratic-optimal-controller[J]. Journal of Xi’an Highway University (Natural Science Edition)200222(3): 88-90 (in Chinese).
8 QUEVEDO J. Digital control: Past, present and future of PID control[M]. New York: Elsevier Science Inc. April 5- 7. 2000.
9 LYU X M, GU H W, ZHOU J N, et al. A hierarchical control approach for a quadrotor tail-sitter VTOL UAV and experimental verification[C]∥ 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2017: 5135-5141.
10 XU Y, LIANG D, WU L N, et al. Design and implementation of twin-rotor tail-sitter UAV[C]∥ 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway: IEEE Press, 2015: 406-410.
11 吴林峰, 李春文. 尾座式垂直起降无人机在时变侧风干扰下的轨迹跟踪控制[J]. 清华大学学报(自然科学版)202262(1): 179-188.
  WU L F, LI C W. Position tracking control for a tailsitter VTOL UAV experiencing time-varying crosswind disturbances[J]. Journal of Tsinghua University (Science and Technology)202262(1): 179-188 (in Chinese).
12 HOCHSTENBACH M, NOTTEBOOM C, THEYS B, et al. Design and control of an unmanned aerial vehicle for autonomous parcel delivery with transition from vertical take-off to forward flight-VertiKUL, a quadcopter tailsitter[J]. International Journal of Micro Air Vehicles20157(4): 395-405.
13 贾伟洋, 杨军, 李玥. 基于粒子群算法优化的模糊PID控制[C]∥2021年第五届全国集群智能与协同控制大会论文集. 北京: 中国指挥与控制学会, 2022, 02(26) 205-210.
  JIA W Y, YANG J, LI Y. Fuzzy PID control based on particle swarm algorithm optimization[C]∥ 2021 Proceedings of the Fifth National Conference on Cluster Intelligence and Cooperative Control.Beijing:Chinese Command and Control Society, 2022, 02(26) 205-210 (in Chinese).
14 WANG X H, CHEN Z Q, YUAN Z Z. Modeling and control of an agile tail-sitter aircraft[J]. Journal of the Franklin Institute2015352(12): 5437-5472.
15 范东生, 邢小军, 赵亚青, 等. 基于自适应模糊PID的无人机四维航迹控制研究[J]. 计算机测量与控制201826(1): 107-109, 114.
  FAN D S, XING X J, ZHAO Y Q, et al. Research on UAV 4D trajectory control based on adaptive fuzzy PID[J]. Computer Measurement & Control201826(1): 107-109, 114 (in Chinese).
16 王婧茹. 基于多模型模糊自适应PID的无人机纵向姿态控制研究[J]. 计算机测量与控制201422(2): 400-402.
  WANG J R. Longitudinal attitude control research of UAV based on multi-model fuzzy self- adaptive PID[J]. Computer Measurement & Control201422(2): 400-402 (in Chinese).
17 VERLING S, WEIBEL B, BOOSFELD M, et al. Full attitude control of a VTOL tailsitter UAV[C]∥ 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 3006-3012.
18 FAULWASSER T, FINDEISEN R. Nonlinear model predictive control for constrained output path following[J]. IEEE Transactions on Automatic Control201661(4): 1026-1039.
19 LAM D, MANZIE C, GOOD M. Model predictive con touring control[C]∥ 49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2010: 6137-6142.
20 LINIGER A, DOMAHIDI A, MORARI M. Optimization-based autonomous racing of 1: 43 scale RC cars[J]. Optimal Control Applications and Methods201536(5): 628-647.
21 JI J L, ZHOU X, XU C, et al. CMPCC: Corridor-based model predictive contouring control for aggressive drone flight[C]∥ International Symposium on Experimental Robotics. Cham: Springer Cham, 2021: 37-46.
22 ROMERO A, SUN S H, FOEHN P, et al. Model predictive contouring control for time-optimal quadrotor flight[J]. IEEE Transactions on Robotics202238(6): 3340-3356.
23 BASESCU M, MOORE J. Direct NMPC for post-stall motion planning with fixed-wing UAVs[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 9592-9598.
24 王和平, 杨华保, 陈江宁, 等. 现代飞行器设计理论与技术[M]. 西安: 西北工业大学出版社, 2012.
  WANG H P, YANG H B, CHEN J N. Modern aircraft design theory and technology[M]. Xi’an: Northwestern Polytechnical University Press, 2012 (in Chinese).
25 BEARD R W, MCLAIN T W. Small unmanned aircraft: Theory and practice[M]. Princeton:Princeton University Press, 2012.
文章导航

/