振动试验控制传感器位置优化设计
收稿日期: 2023-11-06
修回日期: 2023-12-18
录用日期: 2023-12-26
网络出版日期: 2024-01-04
基金资助
国家自然科学基金(51975470)
Layout optimization of control sensors in environmental vibration test
Received date: 2023-11-06
Revised date: 2023-12-18
Accepted date: 2023-12-26
Online published: 2024-01-04
Supported by
National Natural Science Foundation of China(51975470)
在机械设备或结构关键零部件环境振动试验过程中,通常需要用多个控制传感器监测和调整施加到试件上的载荷谱,使之与参考激励谱保持一致。因此,控制传感器的布设位置至关重要。而不恰当的布置会导致对试件的过试验或欠试验现象,严重影响振动试验的效果。为解决此类问题,本文开展了振动试验控制传感器位置优化设计研究。首先,依据振动台随机振动试验多点控制原理,建立了振动试验控制传感器位置优化设计的数学模型。通过特征映射方法,利用周围节点的频响函数加权和获得了控制点的频响函数,使得控制传感器位置在优化过程中可连续地变化。随后,利用基于敏度的优化策略,实现了对控制传感器位置的优化设计,使各控制传感器测得的响应谱均方根值误差明显减小,从而保证了振动试验的顺利进行。
罗清发 , 喻琴 , 李刚 , 王栋 . 振动试验控制传感器位置优化设计[J]. 航空学报, 2024 , 45(18) : 0 -229843- . DOI: 10.7527/S1000-6893.2024.29843
In the environmental vibration test of a structural part, it is necessary to use multiple sensors to control the excitation applied to the test sample, so that the power spectrum input to the test sample would be basically consistent with the reference spectrum. However, the power spectrum measured by each of the control sensors may be significantly different, resulting in a noticeable inconsistency between the magnitudes of vibration forces transferred to the test sample by fixture. In some cases, the control spectrum may even go out-of-tolerance to interrupt the test. To address such a problem, this paper carries out the research on the optimization design of the control sensor positions for a vibration test. Firstly, the mathematical model of the position optimization of the control sensors is established according to the multi-point control strategy of the random vibration test on the vibration table. Using the feature mapping method, we obtain the frequency response function of a control sensor by the weighted sum of the frequency response function at the nodes around the control point to ensure continuous movement of the control sensor during the optimal design process. Then, using the gradient-based optimization algorithm, we can readily achieve the optimal position design of the control sensors, and considerably reduce the difference between the root-mean-square value of the response spectra measured by the control sensors. The optimization method proposed in this paper can provide a theoretical guidance for the position design of control sensors in the environmental vibration test of a structural part.
1 | 王勇, 宁会峰, 杜尹学. 某机载设备振动夹具设计及试验验证[J]. 机械制造与自动化, 2022, 51(4): 35-38. |
WANG Y, NING H F, DU Y X. Structure design and test verification of vibration fixture for airborne equipment[J]. Machine Building & Automation, 2022, 51(4): 35-38 (in Chinese). | |
2 | CHEN D J, CHEN J Y, SHEN X Q, et al. Control strategy for multi-exciter random vibration test[J]. Applied Mechanics and Materials, 2011, 141: 33-38. |
3 | 李奇志, 陈国平, 房凯. 环境振动试验传感器布置优化方法研究[J]. 振动与冲击, 2013, 32(8): 158-161. |
LI Q Z, CHEN G P, FANG K. Sensor placement optimization method in environmental vibration tests[J]. Journal of Vibration and Shock, 2013, 32(8): 158-161 (in Chinese). | |
4 | 李奇志, 陈国平, 陈文华, 等. 最小响应偏离度的振动夹具优化设计[J]. 振动工程学报, 2014, 27(4): 473-480. |
LI Q Z, CHEN G P, CHEN W H, et al. Optimization design of vibration fixture with the minimum response deviation[J]. Journal of Vibration Engineering, 2014, 27(4): 473-480 (in Chinese). | |
5 | 姚阳, 杨存平, 王际. 振动试验超差控制探讨[J]. 环境技术, 2019, 37(4): 38-43. |
YAO Y, YANG C P, WANG J. Discussion on vibration test control technology[J]. Environmental Technology, 2019, 37(4): 38-43 (in Chinese) | |
6 | 朱子宏, 沈志强, 高文硕, 等. 夹具特性对振动控制精度影响效应分析[J]. 环境技术, 2016, 34(5): 14-18, 27. |
ZHU Z H, SHEN Z Q, GAO W S, et al. Analysis of effect of fixture characteristics on vibration control accuracy[J]. Environmental Technology, 2016, 34(5): 14-18, 27 (in Chinese). | |
7 | 欧阳昕, 顾胜健, 陈荣. 约束阻尼层振动试验夹具的动力学分析[J]. 船舶工程, 2018, 40(): 143-146. |
OUYANG X, GU S J, CHEN R. Dynamic analysis of vibration test fixture with constrained damping layer[J]. Ship Engineering, 2018, 40(Sup 1): 143-146 (in Chinese). | |
8 | 王海东, 李贵林, 王肇喜, 等. 基于多目标遗传算法的三轴振动夹具结构参数优化设计分析[J]. 航天器环境工程, 2020, 37(2): 154-160. |
WANG H D, LI G L, WANG Z X, et al. Structural optimization design and analysis of triaxial vibration fixture based on multi-objective genetic algorithm[J]. Spacecraft Environment Engineering, 2020, 37(2): 154-160 (in Chinese). | |
9 | 许红卫, 马啸宇, 周建, 等. 小型夹具随机振动试验高频超差问题研究[J]. 火箭推进, 2019, 45(1): 73-76. |
XU H W, MA X Y, ZHOU J, et al. Study on the excess vibration in high frequency region in random vibration test of small fixture[J]. Journal of Rocket Propulsion, 2019, 45(1): 73-76 (in Chinese). | |
10 | 张允涛, 薛杰, 宋少伟, 等. 轨姿控发动机振动试验夹具结构拓扑优化[J]. 火箭推进, 2023, 49(1): 93-102. |
ZHANG Y T, XUE J, SONG S W, et al. Structural topology optimization of vibration test fixture for orbit and attitude control engines[J]. Journal of Rocket Propulsion, 2023, 49(1): 93-102 (in Chinese). | |
11 | 陈腾飞, 陈陶菲. 振动夹具的综合优化设计[J]. 电子机械工程, 2022, 38(4): 24-28. |
CHEN T F, CHEN T F. Comprehensive optimization design of vibration fixture[J]. Electro-Mechanical Engineering, 2022, 38(4): 24-28 (in Chinese). | |
12 | 彭立晓. 振动试验控制点位置选取方法研究[J]. 装备制造技术, 2021(11): 101-103. |
PENG L X. Study on selection method of vibration test control point position[J]. Equipment Manufacturing Technology, 2021(11): 101-103 (in Chinese). | |
13 | 修晓波, 李伯全, 周峰. 基于遗传算法的温度传感器布置优化[J]. 电子科技, 2021, 34(9): 17-23. |
XIU X B, LI B Q, ZHOU F. Optimization of temperature sensor location based on genetic algorithm[J]. Electronic Science and Technology, 2021, 34(9): 17-23 (in Chinese). | |
14 | NASR D, DAHR R EL, ASSAAD J, et al. Comparative analysis between genetic algorithm and simulated annealing-based frameworks for optimal sensor placement and structural health monitoring purposes[J]. Buildings, 2022, 12(9): 1383. |
15 | 高博, 柏智会, 宋宇博. 基于自适应引力算法的桥梁监测传感器优化布置[J]. 振动与冲击, 2021, 40(6): 86-92, 189. |
GAO B, BAI Z H, SONG Y B. Optimal placement of sensors in bridge monitoring based on an adaptive gravity search algorithm[J]. Journal of Vibration and Shock, 2021, 40(6): 86-92, 189 (in Chinese). | |
16 | BIANCONI F, SALACHORIS G P, CLEMENTI F, et al. A genetic algorithm procedure for the automatic updating of FEM based on ambient vibration tests[J]. Sensors, 2020, 20(11): 3315. |
17 | 杨振伟, 周广东, 伊廷华, 等. 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J]. 工程力学, 2019, 36(3): 63-70. |
YANG Z W, ZHOU G D, YI T H, et al. Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J]. Engineering Mechanics, 2019, 36(3): 63-70 (in Chinese). | |
18 | 伊廷华, 张旭东, 李宏男. 基于自适应猴群算法的传感器优化布置方法研究[J]. 振动与冲击, 2013, 32(23): 57-63. |
YI T H, ZHANG X D, LI H N. Optimal sensor placement based on adaptive monkey algorithm[J]. Journal of Vibration and Shock, 2013, 32(23): 57-63 (in Chinese). | |
19 | WEIN F, DUNNING P D, NORATO J A. A review on feature-mapping methods for structural optimization[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 1597-1638. |
20 | ZELICKMAN Y, AMIR O. Optimization of plate supports using a feature mapping approach with techniques to avoid local minima[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 31. |
/
〈 |
|
〉 |