流体力学与飞行力学

催化床结构对HAN基单组元发动机性能的影响

  • 孙得川 ,
  • 张国强 ,
  • 姚天亮 ,
  • 关亮
展开
  • 1.大连理工大学 工业装备结构分析优化与CAE软件全国重点实验室,大连 116024
    2.大连理工大学 力学与航空航天学院,大连 116024
    3.上海空间推进研究所,上海 201112
.E-mail: dechuans@dlut.edu.cn

收稿日期: 2023-11-01

  修回日期: 2023-11-07

  录用日期: 2023-12-25

  网络出版日期: 2024-01-04

基金资助

上海市优秀学术/技术带头人计划(22XD1422000)

Influence of catalyst bed structure on performance of HAN⁃based monopropellant engine

  • Dechuan SUN ,
  • Guoqiang ZHANG ,
  • Tianliang YAO ,
  • Liang GUAN
Expand
  • 1.State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology,Dalian 116024,China
    2.School of Mechanics and Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China
    3.Shanghai Institute of Space Propulsion,Shanghai 201112,China

Received date: 2023-11-01

  Revised date: 2023-11-07

  Accepted date: 2023-12-25

  Online published: 2024-01-04

Supported by

Program of Shanghai Academic/Technology Research Leader(22XD1422000)

摘要

针对硝酸羟胺(HAN)基推进剂单组元发动机,研究催化床长度和空腔缺陷对发动机工作过程的影响。采用多孔介质假设、Volume of Fluid(VOF)模型以及推进剂分解模型对300 N发动机稳态工作状态和起动过程进行数值仿真。研究结果表明:增加前床长度有利于提高性能,将前床长度由30 mm增加到40 mm,真空比冲提高2.7%。但是,增大前床长度会使响应变慢,不仅使燃气充填阶段末的压强值和温度值分别减小6.7%和12.5%,而且使催化床升温引起的升压时间增加。空腔缺陷会显著降低发动机的性能,前床长度为40 mm时,5 mm的空腔就会使真空比冲降低15%。

本文引用格式

孙得川 , 张国强 , 姚天亮 , 关亮 . 催化床结构对HAN基单组元发动机性能的影响[J]. 航空学报, 2024 , 45(16) : 129818 -129818 . DOI: 10.7527/S1000-6893.2023.29818

Abstract

The influence of catalyst bed length and cavity defects on the engine operation process was investigated for a Hydroxylamine Nitrate (HAN)-based monopropellant engine. Numerical simulations were conducted to examine the steady-state operation and startup process of a 300 N engine using porous media assumption, the Volume of Fluid (VOF) model, and the propellant decomposition model. The results indicate that increasing the length of the front bed contributes to performance improvement. By increasing the front bed length from 30 mm to 40 mm, the specific impulse in vacuum is enhanced by 2.7%. However, increasing the length of the front bed leads to a slower response. This not only reduces the pressure and temperature values at the end of the gas filling stage by 6.7% and 12.5% respectively, but also increases the pressurization time caused by the catalyst bed heating. Cavity defects significantly reduce engine performance. When the front bed length is 40 mm, the 5 mm cavity reduces the vacuum specific impulse by 15%.

参考文献

1 周汉申. 单组元液体火箭发动机设计与研究[M]. 北京: 中国宇航出版社, 2009.
  ZHOU H S. Design and research of single-component liquid rocket engine[M]. Beijing: China Aerospace Press, 2009 (in Chinese).
2 赵许群, 王晓东, 夏连根, 等. 单推-3推进剂催化分解性能研究[C]∥全国催化学术会议, 2002.
  ZHAO X Q, WANG X D, XIA L G,et al. Research on the Catalytic Decomposition Performance of DT-3 Propellant[C]∥National Academic Conference on Catalysis, 2002 (in Chinese).
3 湛建阶, 陈朝辉. 肼类分解催化剂研究进展[J]. 材料导报200721(2): 62-66, 71.
  ZHAN J J, CHEN Z H. Progress in research on hydrazine decomposition catalysts[J]. Materials Review200721(2): 62-66, 71 (in Chinese).
4 JING L Y, YOU X Q, HUO J L, et al. Experimental and numerical studies of ammonium dinitramide based liquid propellant combustion in space thruster[J]. Aerospace Science and Technology201769: 161-170.
5 刘建国, 安振涛, 张倩, 等. 硝酸羟胺的热稳定性评估及热分解机理研究[J]. 材料导报201731(4): 145-152.
  LIU J G, AN Z T, ZHANG Q, et al. Thermal stability evaluation and thermal decomposition mechanism of hydroxylamine nitrate[J]. Materials Review201731(4): 145-152 (in Chinese).
6 鲍立荣, 汪辉, 陈永义, 等. 硝酸羟胺基绿色推进剂研究进展[J]. 含能材料202028(12): 1200-1210.
  BAO L R, WANG H, CHEN Y Y, et al. Review on hydroxylammonium nitrate based green propellant[J]. Chinese Journal of Energetic Materials202028(12): 1200-1210 (in Chinese).
7 KATSUMI T, HORI K. Successful development of HAN based green propellant[J]. Energetic Materials Frontiers20212(3): 228-237.
8 AGNIHOTRI R, OOMMEN C. Cerium oxide based active catalyst for hydroxylammonium nitrate (HAN) fueled monopropellant thrusters[J]. RSC Advances20188(40): 22293-22302.
9 FOUST J. Clogged propellant lines doomed NASA lunar cubesat mission[EB/OL]. (2023-8-10) [2023-11-01]. .
10 LEMMER K. Propulsion for CubeSats[J]. Acta Astronautica2017134: 231-243.
11 TUMMALA A R, DUTTA A. An overview of cube-satellite propulsion technologies and trends[J]. Aerospace20174(4): 58.
12 白梅杉, 於希乔, 陆文杰, 等. 硝酸羟胺发动机喷注器特种流量分配方法[J]. 火箭推进202349(5): 99-106.
  BAI M S, YU X Q, LU W J, et al. Injector flow distribution method of a hydroxylamine nitrate thruster[J]. Journal of Rocket Propulsion202349(5): 99-106 (in Chinese).
13 LIN Q G, LIU C, LIU J. Development on HAN-based monopropellant thruster: Space Propulsion[C]∥Space Propulsion Conference 2014, 2014.
14 姚天亮, 郭曼丽, 戴佳, 等. 新型弹簧床结构的HAN基发动机技术[J]. 宇航学报201940(4): 444-451.
  YAO T L, GUO M L, DAI J, et al. HAN-based thruster technology with a new spring bed structure[J]. Journal of Astronautics201940(4): 444-451 (in Chinese).
15 白梅杉, 戴佳, 姚天亮, 等. HAN基无毒单元发动机常温启动技术研究[J]. 宇航总体技术20193(2): 36-43.
  BAI M S, DAI J, YAO T L, et al. Research of HAN-based green monopropellant thruster start under normal temperature[J]. Astronautical Systems Engineering Technology20193(2): 36-43 (in Chinese).
16 刘川, 赵峰, 刘俊. HAN基无毒单组元1 N发动机设计研究[J]. 上海航天201633(4): 32-37.
  LIU C, ZHAO F, LIU J. Research on HAN-based green 1 N monopropellant thruster[J]. Aerospace Shanghai201633(4): 32-37 (in Chinese).
17 WADA A, WATANABE H, TAKEGAHARA H. Combustion characteristics of a hydroxylammonium-nitrate-based monopropellant thruster with discharge plasma system[J]. Journal of Propulsion and Power201834(4): 1052-1060.
18 刘昌国, 关亮, 施伟, 等. 单组元300N发动机低温试验研究[J]. 推进技术202142(7): 1662-1670.
  LIU C G, GUAN L, SHI W, et al. Low temperature experimental research on mono-propellant 300N engine[J]. Journal of Propulsion Technology202142(7): 1662-1670 (in Chinese).
19 ZHOU X, HITT D. Numerical modeling of monopropellant decomposition in a micro-catalyst bed[C]∥ 35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005.
20 李岩. ADN推进器的工作过程仿真及结构参数优化设计研究[D]. 北京: 北京交通大学, 2014.
  LI Y. Simulation of work process and optimization design of structure parameters of ADN thruster[D].Beijing: Beijing Jiaotong University, 2014 (in Chinese).
21 张涛, 李国岫, 虞育松, 等. 基于1N级ADN推力器结构参数优化的仿真研究[J]. 载人航天201521(3): 309-314.
  ZHANG T, LI G X, YU Y S, et al. Simulation study on structural parameter optimization of ADN thruster[J]. Manned Spaceflight201521(3): 309-314 (in Chinese).
22 郭堂松. HAN基单组元推力器结构参数优化设计的仿真研究[D]. 北京: 北京交通大学, 2021.
  GUO T S. Simulation study on optimization design of structural parameters of HAN-based single component thruster[D].Beijing: Beijing Jiaotong University, 2021 (in Chinese).
23 蒋耀东, 徐全勇, 马玉林, 等. 肼基单组元火箭发动机的动态响应[J]. 航空学报202344(21): 529170.
  JIANG Y D, XU Q Y, MA Y L,et al. Dynamic response study of hydrazine-based Monocomponent Rocket Engine[J]. Acta Aeronautica et Astronautica Sinica202344(21): 529170.
24 SUN D C, XIANG W B. Simplified numerical simulation model for hydroxyl ammonium nitrate-based monopropellant rocket engines[J]. Aerospace Science and Technology201995: 105474.
25 SUN D C, LIU J, XIANG W B. Numerical simulation of the transient process of monopropellant rocket engines[J]. Aerospace Science and Technology2020103: 105921.
26 孙得川, 姚天亮. 硝酸羟胺基单组元液体火箭发动机起动过程的模拟[J]. 推进技术202041(1): 58-64.
  SUN D C, YAO T L. Simulation of start-up transient process for hydroxylamine nitrate-based liquid monopropellant rocket engine[J]. Journal of Propulsion Technology202041(1): 58-64 (in Chinese).
27 LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics1994115(1): 200-212.
28 SHU C W. High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD[J]. International Journal of Computational Fluid Dynamics200317(2): 107-118.
文章导航

/