多智能体多耦合任务混合式智能决策架构设计
收稿日期: 2023-10-26
修回日期: 2023-11-21
录用日期: 2023-12-20
网络出版日期: 2024-01-04
Design of hybrid intelligent decision framework for multi⁃agent and multi⁃coupling tasks
Received date: 2023-10-26
Revised date: 2023-11-21
Accepted date: 2023-12-20
Online published: 2024-01-04
王雪鉴 , 文永明 , 石晓荣 , 张宁宁 , 刘洁玺 . 多智能体多耦合任务混合式智能决策架构设计[J]. 航空学报, 2023 , 44(S2) : 729770 -729770 . DOI: 10.7527/S1000-6893.2023.29770
To address the coupling problem and decision-making problem of multiple tasks such as task allocation and path planning of multi-agents in complex application scenarios, a design method of hybrid intelligent decision-making framework for multi-agent and multi-coupling tasks is proposed. Firstly, the advantages of single agent multi-task hybrid framework and multi-agent distributed collaborative control, a hybrid intelligent decision-making framework for multi-agent and multi-coupling tasks is designed. Secondly, the strategy network of the framework and the training controller for the strategy network are designed and a coupling relationship matrix based on coupling relationships is proposed to achieve efficient training of multi-agents and multi-tasks in face of collaborative decision-making problems. Finally, this paper modeled, trained algorithm and simulated in simulation environment,and compared with the tradition method to verifies the effectiveness and advantages of the proposed method.
1 | VERMA J K, RANGA V. Multi-robot coordination analysis, taxonomy, challenges and future scope[J]. Journal of Intelligent & Robotic Systems, 2021, 102(1): 10. |
2 | 林萌龙, 陈涛, 任棒棒, 等. 基于多智能体深度强化学习的体系任务分配方法[J]. 指挥与控制学报, 2023, 9(1): 93-102. |
LIN M L, CHEN T, REN B B, et al. Task assignment method of operation system of systems based on multi- agent deep reinforcement learning[J]. Journal of Command and Control, 2023, 9(1): 93-102 (in Chinese). | |
3 | TANG J, DUAN H B, LAO S Y. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review[J]. Artificial Intelligence Review, 2023, 56(5): 4295-4327. |
4 | GUO J G, HU G J, GUO Z Y, et al. Evaluation model, intelligent assignment, and cooperative interception in multimissile and multitarget engagement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3104-3115. |
5 | 刘庆周, 吴锋. 多智能体路径规划研究进展[J]. 计算机工程, 2020, 46(4): 1-10. |
LIU Q Z, WU F. Research progress of multi-agent path planning[J]. Computer Engineering, 2020, 46(4): 1-10 (in Chinese). | |
6 | RAHMAN M, ALAM M A, ISLAM M M, et al. An adaptive agent-specific sub-optimal bounding approach for multi-agent path finding[J]. IEEE Access, 1092, 10: 22226-22237. |
7 | 刘文兵, 王艺栋. 多无人机协同搜索多目标的路径规划问题研究[J]. 电光与控制, 2019, 26(3): 35-38, 73. |
LIU W B, WANG Y D. Path planning of multi-UAV cooperative search for multiple targets[J]. Electronics Optics & Control, 2019, 26(3): 35-38, 73 (in Chinese). | |
8 | 丁文俊, 柴亚军, 侯冬冬, 等. AUV&UAV跨域协同搜索与跟踪路径规划[J]. 航空学报, 2023, 44(21): 128471. |
DING W J, CHAI Y J, HOU D D, et al. Path planning for AUV & UAV cross-domain collaborative search and tracking[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 128471 (in Chinese). | |
9 | 刘畅, 谢文俊, 张鹏, 等. 多基地多无人机航迹避障任务规划[J]. 计算机工程, 2019, 45(11): 275-280. |
LIU C, XIE W J, ZHANG P, et al. Mission planning for multi-base multi-UAV obstacle avoidance[J]. Computer Engineering, 2019, 45(11): 275-280 (in Chinese). | |
10 | 赵飞虎, 李哲, 王宁, 等. 面向战场的多无人机协同打击航迹规划[J]. 电光与控制, 2023, 30(9): 9-14, 91. |
ZHAO F H, LI Z, WANG N, et al. Path planning for multi-UAV cooperative strike in battlefield environments[J]. Electronics Optics & Control, 2023, 30(9): 9-14, 91 (in Chinese). | |
11 | 陈明强, 冯树娟, 李奇峰. 基于改进人工势场的物流无人机三维航迹规划[J]. 无线电工程, 2023, 53(10): 2352-2359. |
CHEN M Q, FENG S J, LI Q F. Three-dimensional trajectory planning of logistics UAV based on improved artificial potential field[J]. Radio Engineering, 2023, 53(10): 2352-2359 (in Chinese). | |
12 | 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. |
JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111 (in Chinese). | |
13 | 李璐璐,朱睿杰,隋璐瑶,等.智能集群系统的强化学习方法综述[J/OL].计算机学报. . |
LI L L, ZHU R J, SUI L Y, et al. The reinforcement learning methods for intelligent collective system: A survey[J/OL]. Chinese Journal of Computers. . | |
14 | 马卫华. 导弹/火箭制导、导航与控制技术发展与展望[J]. 宇航学报, 2020, 41(7): 860-867. |
MA W H. Review and prospect of missile/launch vehicle guidance, navigation and control technologies[J]. Journal of Astronautics, 2020, 41(7): 860-867 (in Chinese). | |
15 | 文永明, 石晓荣, 黄雪梅, 等. 一种无人机集群对抗多耦合任务智能决策方法[J]. 宇航学报, 2021, 42(4): 504-512. |
WEN Y M, SHI X R, HUANG X M, et al. An intelligent decision-making method for multi-coupling tasks of UAV cluster countermeasure[J]. Journal of Astronautics, 2021, 42(4): 504-512 (in Chinese). | |
16 | 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27. |
LIU Q, ZHAI J W, ZHANG Z C, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1-27 (in Chinese). | |
17 | LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6382–6393. |
18 | SUKHBAATAR S, SZLAM A, FERGUS R. Learning multiagent communication with backpropagation[C]∥ Proceedings of the 30th International Conference on Neural anInformation Processing Systems. New York: ACM, 2016: 2252–2260. |
19 | 王子豪, 张严心, 黄志清, 等. 部分可观测下基于RGMAAC算法的多智能体协同[J]. 控制与决策, 2023, 38(5): 1267-1277. |
WANG Z H, ZHANG Y X, HUANG Z Q, et al. Multi- agent collaboration based on RGMAAC algorithm under partial observability[J]. Control and Decision, 2023, 38(5): 1267-1277 (in Chinese). | |
20 | 孙英博, 苗国英, 庄亚楠. 基于改进的深度强化学习多智能体协作方法[J]. 传感器与微系统, 2023, 42(9): 25-29. |
SUN Y B, MIAO G Y, ZHUANG Y N. Multi-agent collaboration method based on improved deep reinforcement learning[J]. Transducer and Microsystem Technologies, 2023, 42(9): 25-29 (in Chinese). |
/
〈 |
|
〉 |