可重复使用运载火箭技术专栏

大气层内动力下降段的组合干扰补偿制导

  • 陈星伦 ,
  • 张冉 ,
  • 张晓燕
展开
  • 1.北京航空航天大学 宇航学院,北京 100191
    2.中国科学院 数学与系统科学研究院 系统控制重点实验室,北京 100190
    3.中国科学院大学 数学科学学院,北京 100049
.E-mail: zhangran@buaa.edu.cn

收稿日期: 2023-01-03

  修回日期: 2023-02-01

  录用日期: 2023-04-11

  网络出版日期: 2023-04-23

基金资助

国家自然科学基金(62103014)

Combined disturbance compensation guidance for powered descent in atmosphere

  • Xinglun CHEN ,
  • Ran ZHANG ,
  • Xiaoyan ZHANG
Expand
  • 1.School of Astronautics,Beihang University,Beijing 100191,China
    2.Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China
    3.School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-01-03

  Revised date: 2023-02-01

  Accepted date: 2023-04-11

  Online published: 2023-04-23

摘要

可重复使用运载火箭在大气层内的回收着陆依靠气动力和推力完成高精度的定点垂直软着陆。在动力下降段,存在推力偏差、气动模型偏差和风扰动等各种干扰,将降低终端着陆精度并影响性能指标,使制导系统面临抗干扰的难题。为解决该难题,提出了一种组合干扰补偿制导方法,根据干扰是否可建模描述,将干扰分为可模型化的干扰和不可模型化的干扰,分别对这2类干扰进行处理。可模型化的干扰是指可以用模型描述的干扰,考虑将其用于最优制导中来提升性能指标;不可模型化的干扰是指难以用模型描述的干扰,考虑仅实时补偿其对终端约束的不利影响。在组合干扰补偿制导框架中,首先,设计了干扰估计器,用于对2类干扰进行实时估计;然后,设计了邻近最优干扰补偿制导算法,利用可模型化的干扰的估计值对最优制导指令进行实时修正补偿,在保证终端约束条件的前提下,利用可模型化的干扰提升性能指标;最后,设计了终端不变性干扰补偿制导算法,通过计算不可模型化的干扰引起的终端约束摄动,实时补偿不可模型化的干扰对终端约束的不利影响来保证终端不变性。仿真结果表明,所提出的组合干扰补偿制导方法能够在保证终端着陆精度的同时提升性能指标,同时对各种干扰具有较强的鲁棒性。

本文引用格式

陈星伦 , 张冉 , 张晓燕 . 大气层内动力下降段的组合干扰补偿制导[J]. 航空学报, 2023 , 44(23) : 628465 -628465 . DOI: 10.7527/S1000-6893.2022.28465

参考文献

1 BLACKMORE L. Autonomous precision landing of space rockets[M]∥Frontiers of engineering: Reports on leading-edge engineering from the 2016 symposium. Washington, D.C.: The National Academies Press, 2016.
2 CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight: AIAA-1964-0638[R]. Reston: AIAA, 1964.
3 KLUMPP A R. Apollo lunar descent guidance[J]. Automatica197410(2): 133-146.
4 任高峰, 崔平远, 崔祜涛, 等. 一种新型火星定点着陆轨迹快速优化方法[J]. 宇航学报201334(4): 464-472.
  REN G F, CUI P Y, CUI H T, et al. A new method of rapid trajectory optimization for Mars pin-point landing[J]. Journal of Astronautics201334(4): 464-472 (in Chinese).
5 LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics201841(4): 813-826.
6 CHENG L, WANG Z B, JIANG F H, et al. Fast generation of optimal asteroid landing trajectories using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems202056(4): 2642-2655.
7 ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics200730(5): 1353-1366.
8 张志国, 马英, 耿光有, 等. 火箭垂直回收着陆段在线制导凸优化方法[J]. 弹道学报201729(1): 9-16.
  ZHANG Z G, MA Y, GENG G Y, et al. Convex optimization method used in the landing-phase on-line guidance of rocket vertical recovery[J]. Journal of Ballistics201729(1): 9-16 (in Chinese).
9 SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints: AIAA-2016-0378[R]. Reston: AIAA, 2016.
10 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用201835(3): 389-398.
  WANG J B, CUI N G, GUO J F, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory & Applications201835(3): 389-398 (in Chinese).
11 SZMUK M, REYNOLDS T P, ACIKMESE B. Successive convexification for real-time six-degree-of-freedom powered descent guidance with state-triggered constraints[J]. Journal of Guidance, Control, and Dynamics202043(8): 1399-1413.
12 REYNOLDS T P, SZMUK M, MALYUTA D, et al. Dual quaternion-based powered descent guidance with state-triggered constraints[J]. Journal of Guidance, Control, and Dynamics202043(9): 1584-1599.
13 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报202041(5): 323606.
  AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica202041(5): 323606 (in Chinese).
14 LU P, CALLAN R. Propellant-optimal powered descent guidance revisited[J]. Journal of Guidance, Control, and Dynamics202346(2): 215-230.
15 MCHENRY R L, LONG A D, COCKRELL B F, et al. Space shuttle ascent guidance, navigation, and control[J]. Journal of the Astronautical Sciences1979, 27.
16 赵剑, 黄悦琛, 李海阳, 等. 垂直起降运载火箭返回轨迹不确定性优化[J]. 航空学报202142(11): 524829.
  ZHAO J, HUANG Y C, LI H Y, et al. Uncertainty optimization for return trajectory of vertical takeoff and vertical landing launch vehicle[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524829 (in Chinese).
17 邓云山, 夏元清, 孙中奇, 等. 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报202142(11): 524834.
  DENG Y S, XIA Y Q, SUN Z Q, et al. Autonomous trajectory planning method for Mars precise landing in disturbed environment[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524834 (in Chinese).
18 KOKOTOVIC P V, CRUZ J B, HELLER J E, et al. Synthesis of optimally sensitive systems[J]. Proceedings of the IEEE196856(8): 1318-1324.
19 PONTANI M, CELANI F. Neighboring optimal guidance and constrained attitude control applied to three-dimensional lunar ascent and orbit injection[J]. Acta Astronautica2019156: 78-91.
20 PERKINS W R, KOKOTOVI? P V. Deterministic parameter estimation for near-optimum feedback control[J]. Automatica19717(4): 439-444.
21 HUANG Y, XUE W C. Active disturbance rejection control: Methodology and theoretical analysis[J]. ISA Transactions201453(4): 963-976.
22 CHEN W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics20049(4): 706-710.
23 WANG F, ZONG Q, DONG Q, et al. Disturbance observer-based sliding mode backstepping control for a re-entry vehicle with input constraint and external disturbance[J]. Transactions of the Institute of Measurement and Control201638(2): 165-181.
24 MA G F, CHEN C, LV Y Y, et al. Observer-based attitude control for reusable launch vehicle with input constraints[C]∥2018 Chinese Control and Decision Conference. Piscataway: IEEE Press, 2018: 365-370.
25 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报201940(7): 322782.
  WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica201940(7): 322782 (in Chinese).
26 伊鑫, 潘豪, 黄聪, 等. 垂直回收运载火箭高精度姿态控制技术[J]. 深空探测学报(中英文)20229(5): 492-497.
  YI X, PAN H, HUANG C, et al. High precision attitude control technology of vertical landing returning rocket[J]. Journal of Deep Space Exploration20229(5): 492-497 (in Chinese).
27 郭孝宽, 岳丕玉. 运载火箭的摄动预测制导[J]. 自动化学报19795(3): 167-176.
  GUO X K, YUE P Y. The perturbative and predictive guidance of the launch vehicle[J]. Acta Automatica Sinica19795(3): 167-176 (in Chinese).
28 林金. 变参数线性自动控制系统的外干扰完全补偿理论[J]. 自动化学报19806(1): 1-7.
  LIN J. Theory of full compensation of external perturbation for the time-varying parameter linear systems[J]. Acta Automatica Sinica19806(1): 1-7 (in Chinese).
29 王嘉炜, 张冉, 郝泽明, 等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报202041(11): 624051.
  WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica202041(11): 624051 (in Chinese).
30 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报202142(11): 1416-1426.
  HAO Z M, ZHANG R, WANG J W, et al. Real-time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics202142(11): 1416-1426 (in Chinese).
文章导航

/