垂直起降可重复使用运载火箭全剖面飞行预设性能控制
收稿日期: 2022-10-11
修回日期: 2022-11-25
录用日期: 2023-02-10
网络出版日期: 2023-02-26
基金资助
国家自然科学基金(12002398)
Full flight profile prescribed performance control for vertical take-off and vertical landing reusable launch vehicle
Received date: 2022-10-11
Revised date: 2022-11-25
Accepted date: 2023-02-10
Online published: 2023-02-26
Supported by
National Natural Science Foundation of China(12002398)
针对垂直起降可重复使用运载火箭在多异类执行机构作用下的全剖面飞行高精度强鲁棒姿态控制系统设计需求,提出了预设性能控制方法,采用一套控制结构和控制参数,可实现火箭的全剖面飞行控制。首先,建立了垂直起降可重复使用运载火箭的7个飞行阶段动力学模型,同时为减少制导指令切换产生的突变,设计了二阶系统参考模型,并基于参考模型推导了姿态跟踪误差状态方程。其次,设计了一种新型的具有指定收敛时间特性的预设性能函数,并推导了新的误差变量,建立了控制模型。然后,基于新的误差变量推导了具有预定时间收敛特性的姿态控制律,并证明了其稳定性。最后,为进一步提高鲁棒性,引入自抗扰控制中的扩张状态观测器理念,对新误差变量的二阶导数和外界扰动进行估计,从而降低了控制器的复杂度,提高了控制精度。通过与比例微分(PD)控制器、自抗扰滑模控制器和其他预设性能控制器进行仿真比较,表明所提出的方法具有参数少、调参简单、精度高和鲁棒性强等优点。
张亮 , 李丹钰 , 崔乃刚 , 李源 . 垂直起降可重复使用运载火箭全剖面飞行预设性能控制[J]. 航空学报, 2023 , 44(23) : 628103 -628103 . DOI: 10.7527/S1000-6893.2022.28103
To solve the problem of high-precision and robust attitude control system design for vertical takeoff and vertical landing reusable vehicle in full flight profile under the action of multiple heterogeneous actuators, a prescribed performance control method is proposed. A set of control structure and control parameters are adopted to realize the full flight profile control of the vehicle. Firstly, the dynamics model of the vehicle in seven flight stages is established. To reduce the mutation caused by guidance command switching, a second-order reference model is designed, and the state equation of attitude tracking error is derived based on the reference model. Secondly, a novel prescribed performance function with appointed convergence time is designed. The new error variables are derived, and the control model is also established. Then, based on the new error variables, the attitude control law with predefined time convergence characteristics is derived and its stability is proved. Finally, to further improve the robustness, an extended state observer is introduced to estimate the second derivative of the new error variable and the external disturbance, so as to reduce the complexity of the controller and improve the control accuracy. Simulation results show that compared with the Proportional Differential (PD) controller, active disturbance rejection sliding mode controller and other prescribed performance controller, the proposed method has the advantages of fewer parameters, simpler parameter tuning, higher precision and stronger robustness.
1 | 崔乃刚, 吴荣, 韦常柱, 等. 火箭垂直返回双幂次固定时间收敛滑模控制方法[J]. 哈尔滨工业大学学报, 2020, 52(4): 15-24. |
CUI N G, WU R, WEI C Z, et al. Double-order power fixed-time convergence sliding mode control method for launch vehicle vertical returning[J]. Journal of Harbin Institute of Technology, 2020, 52(4): 15-24 (in Chinese). | |
2 | 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2): 27-42. |
CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2): 27-42 (in Chinese). | |
3 | 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32): 3453-3463. |
XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle[J]. Chinese Science Bulletin, 2016, 61(32): 3453-3463 (in Chinese). | |
4 | BOSKOVIC J D, JACKSON J A, MEHRA R K, et al. Adaptive fault tolerant control design for a model of DC-X dynamics[C]∥ 2008 American Control Conference. Piscataway: IEEE Press, 2008: 1046-1051. |
5 | 张亮, 黄盘兴, 徐大富, 等. 垂直起降火箭垂直返回段自适应容错控制算法[J]. 战术导弹技术, 2015(2): 63-69. |
ZHANG L, HUANG P X, XU D F, et al. VTVL rocket fault-tolerant control for its return trajectory[J]. Tactical Missile Technology, 2015(2): 63-69 (in Chinese). | |
6 | WANG F, HUA C C, ZONG Q. Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(10): 1308-1327. |
7 | 崔乃刚, 张亮, 韦常柱, 等. 可重复使用运载器大姿态机动自抗扰控制[J]. 中国惯性技术学报, 2017, 25(3): 387-394. |
CUI N G, ZHANG L, WEI C Z, et al. Active disturbance rejection control for reusable launch vehicle with large attitude maneuver[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 387-394 (in Chinese). | |
8 | 陈佳晔, 王紫扬, 陈益, 等. 基于迭代学习干扰观测器的RLV容错控制方法[J]. 中国惯性技术学报, 2021, 29(6): 832-840. |
CHEN J Y, WANG Z Y, CHEN Y, et al. RLV fault-tolerant control method based on iterative learning disturbance observer[J]. Journal of Chinese Inertial Technology, 2021, 29(6): 832-840 (in Chinese). | |
9 | 刘航. 运载火箭第一级回收控制研究[D]. 西安: 西安电子科技大学, 2020. |
LIU H. Research on the first stage recovery control of launch vehicle[D]. Xi’an: Xidian University, 2020 (in Chinese). | |
10 | VIGNESH S A, APM I H, VP A K, et al. Trajectory planning and soft landing of RLV using non-linear model predictive control[C]∥ 2021 Seventh Indian Control Conference. Piscataway: IEEE Press, 2021: 87-92. |
11 | XING G Q, PARVEZ S A. Nonlinear attitude state tracking control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 624-626. |
12 | PEI J, PUETZ A, DUARTE C, et al. Suppression of nonlinear rotary slosh dynamics using the SLS adaptive augmenting control system demonstration on a quadcopter testbed: AIAA-2019-0114[R]. Reston: AIAA, 2019. |
13 | SHTESSEL Y B, HALL C E, BAEV S, et al. Flexible modes control using sliding mode observers: Application to Ares I: AIAA-2010-7565[R]. Reston: AIAA, 2010. |
14 | 钱默抒, 熊克, 王海洋. 重复使用运载火箭精确回收滑模动态面控制[J]. 宇航学报, 2018, 39(8): 879-888. |
QIAN M S, XIONG K, WANG H Y. Sliding mode dynamic surface control in precise recovery phase for reusable launch vehicle[J]. Journal of Astronautics, 2018, 39(8): 879-888 (in Chinese). | |
15 | 李晓栋, 廖宇新, 廖俊, 等. 可重复使用运载火箭一子级垂直回收有限时间滑模控制[J]. 中南大学学报(自然科学版), 2020, 51(4): 979-988. |
LI X D, LIAO Y X, LIAO J, et al. Finite-time sliding mode control for vertical recovery of the first-stage of reusable rocket[J]. Journal of Central South University (Science and Technology), 2020, 51(4): 979-988 (in Chinese). | |
16 | 李晓栋, 廖宇新, 李珺. 基于MFTESO的可重复使用运载火箭多变量有限时间控制方法[J]. 控制与信息技术, 2019(4): 12-17. |
LI X D, LIAO Y X, LI J. MFTESO based multivariable finite-time control for reusable rocket[J]. Control and Information Technology, 2019(4): 12-17 (in Chinese). | |
17 | 杨少波. 垂直起降火箭末段定点着陆的制导控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
YANG S B. Research on guidance and control method of fixed point landing of vertical takeoff vertical landing rocket in the last stage[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). | |
18 | JU X Z, WEI C Z, ZHANG L, et al. Semi-globally smooth control for VTVL reusable launch vehicle under actuator faults and attitude constraints[J]. Acta Astronautica, 2022, 191: 528-546. |
19 | ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82/83: 70-79. |
20 | ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159: 362-370. |
21 | JU X Z, WEI C Z, XU H C, et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA Transactions, 2022, 129: 55-72. |
22 | ZHANG L, JING L, YE L H, et al. Predefined-time control for a horizontal takeoff and horizontal landing reusable launch vehicle[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(6): 957-970. |
23 | 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11): 525050. |
SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525050 (in Chinese). | |
24 | 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782. |
WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322782 (in Chinese). | |
25 | WU R, WEI C Z, YANG F, et al. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems[J]. IET Control Theory & Applications, 2018, 12(18): 2459-2467. |
26 | ZHANG L, JU X Z, CUI N G. Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology, 2021, 110: 106511. |
27 | SáNCHEZ-TORRES J D, DEFOORT M, MU?OZ-VáZQUEZ A J. Predefined-time stabilisation of a class of nonholonomic systems[J]. International Journal of Control, 2020, 93(12): 2941-2948. |
28 | JIMéNEZ-RODRíGUEZ E, MU?OZ-VáZQUEZ A J, SáNCHEZ-TORRES J D, et al. A Lyapunov-like characterization of predefined-time stability[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4922-4927. |
29 | MU?OZ-VáZQUEZ A J, SáNCHEZ-TORRES J D, JIMéNEZ-RODRíGUEZ E, et al. Predefined-time robust stabilization of robotic manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1033-1040. |
30 | ZHANG C, MA G F, SUN Y C, et al. Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation[J]. ISA Transactions, 2019, 89: 84-95. |
31 | XU B J, JI S, ZHANG C R, et al. Linear-extended-state-observer-based prescribed performance control for trajectory tracking of a robotic manipulator[J]. Industrial Robot, 2021, 48(4): 544-555. |
32 | ZHANG L, WU R, WEI C Z, et al. Quaternion-based reusable launch vehicle composite attitude control via active disturbance rejection control and sliding mode approach: AIAA-2017-2320[R]. Reston: AIAA, 2017. |
33 | 李杨, 刘昶, 王吉飞, 等. 垂直起降运载火箭总体方案研究[J]. 南京航空航天大学学报, 2019, 51(S1): 1-6. |
LI Y, LIU C, WANG J F, et al. General design study of vertical takeoff and landing launch vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(S1): 1-6 (in Chinese). |
/
〈 |
|
〉 |