锤头体火箭弹性模型脉动压力风洞试验
收稿日期: 2022-12-12
修回日期: 2023-01-04
录用日期: 2023-01-13
网络出版日期: 2023-02-01
Wind tunnel test of fluctuating pressure on aeroelastic scaled model of hammerhead launch vehicle
Received date: 2022-12-12
Revised date: 2023-01-04
Accepted date: 2023-01-13
Online published: 2023-02-01
建立了运载火箭弹性模型脉动压力风洞试验方法,弹性模型同时模拟气动外形和减缩频率特性。开展了锤头体火箭刚性和弹性2种模型的风洞试验,测量表面脉动压力,研究模型弹性振动对表面非定常压力的影响。试验马赫数为2.5。试验发现刚性模型试验中不同攻角下脉动压力幅值较为接近,且功率谱中无明显主频。弹性模型试验中,小攻角下流场出现了以模型一弯频率及其倍频为特征的非定常压力脉动,同时脉动压力均方根相比刚性模型的结果大幅增加,流固耦合现象明显。在大攻角下弹性模型试验与刚性模型试验的脉动压力均方根比较接近,且压力信号无明显特征频率,流固耦合现象不明显。弹性模型试验中使用应变片对模型弹性梁的振动进行了测量,发现振动起始后经过发散段最终形成极限环振荡。通过滤波处理对比压力与结构振动一阶特征频率信号的相位关系,发现振动发散段模型上表面大部分测点的脉动压力与结构振动有半个周期左右的相位差;最终达到极限环振荡时,上表面脉动压力与振动接近同相位,脉动压力与振动的相位关系影响到流动对结构的做功效果。
刘畅 , 张耘隆 , 闫指江 , 赵磊 , 季辰 . 锤头体火箭弹性模型脉动压力风洞试验[J]. 航空学报, 2023 , 44(23) : 128384 -128384 . DOI: 10.7527/S1000-6893.2023.28384
A wind tunnel fluctuating pressure test method using the aeroelastic scaled model of a launch vehicle is established. The aeroelastic scaled model is similar to the launch vehicle in geometry and reduced frequency. A wind tunnel test using both the rigid scaled model and aeroelastic scaled model of a hammerhead launch vehicle is conducted to measure fluctuating pressure on the model surface and to evaluate the influence of vibration on unsteady pressure. The Mach number of the test is 2.5. Test results suggest that the flow field of the rigid model has no characteristic frequency while that of the elastic model at a small angle of attack encounters dominant frequencies which are exactly the first order model structural frequency and its multiplication. Moreover, the root-mean-squares of fluctuating pressure increase tremendously when fluid structure interaction occurs. At a high angle of attack, the root-mean-squares of fluctuating pressure on the elastic model decrease to the level near the rigid model results as the fluid structure interaction weakens. The strain at the base of the elastic beam is measured and the result shows a half cycle phase difference between the vibration and the pressure signal of the 1st order characteristic frequency at the divergent stage. Finally the interaction between the pressure and structure reaches a limit cycle oscillation stage and the phase difference decreases to nearly zero. These phase differences have an impact on the capacity of doing work on structure by flow.
1 | ROBERTSON J. Unsteady pressure phenomena for basic missile shapes at transonic speeds[C]∥ Proceedings of the Aerospace Sciences Meeting. Reston:AIAA, 1964. |
2 | JONES G W, FOUGHNER J T. Investigation of buffet pressure on models of large manned launch vehicle configurations: NASA TN D-1633[R]. Washington, D.C.: 1963. |
3 | COE C F. Surface pressure fluctuations associated with aerodynamic noise: NASA SP-207[R]. Washington, D.C.: 1969. |
4 | ROBERTSON J E. Prediction of in-flight fluctuating pressure environments[J]. The Journal of the Acoustical Society of America, 1971, 50(S1): 120-121. |
5 | 赵磊. 脉动压力载荷研究[C]∥ 第三届全国飞行器载荷技术学术研讨会论文集. 2010: 186-191. |
ZHAO L. Research of fluctuating pressure load[C]∥ Proceedings of Third Aerial Vehicle Load Technology Seminar. 2010: 186-191 (in Chinese). | |
6 | 操小龙, 罗金玲, 周丹杰, 等. 锥-柱体外形脉动压力及抖振载荷响应研究[J]. 战术导弹技术, 2010(1): 67-72. |
CAO X L, LUO J L, ZHOU D J, et al. The research of fluctuating pressure and buffeting load on the cone-column body[J]. Tactical Missile Technology, 2010(1): 67-72 (in Chinese). | |
7 | 武利龙, 操小龙, 王靖, 等. 飞行器级间段跨声速脉动压力特性试验[J]. 航空学报, 2019, 40(8): 122815. |
WU L L, CAO X L, WANG J, et al. Pressure fluctuation laws test on interstage section of flight vehicle at transonic speeds[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122815 (in Chinese). | |
8 | 王娜, 高超. 弹体脉动压力特征的实验研究[J]. 实验流体力学, 2010, 24(1): 30-35. |
WANG N, GAO C. Experimental research of fluctuating pressure on surface for a certain missile configuration[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 30-35 (in Chinese). | |
9 | 吴继飞, 罗新福, 徐来武, 等. 内埋武器舱关键气动及声学问题研究[J]. 空气动力学学报, 2016, 34(4): 482-489. |
WU J F, LUO X F, XU L W, et al. Investigation on key aerodynamic and aeroacoustic problems of internal weapons bay[J]. Acta Aerodynamica Sinica, 2016, 34(4): 482-489 (in Chinese). | |
10 | ZHAO L, ZHAO X J, LI S X. Fluctuating pressure inside/outside the flow separation region in high speed flowfield[J]. Journal of Aerospace Science and Technology, 2015, 1 (1): 18-26. |
11 | 冯明溪, 王志安. 火箭跨音速动导数和抖振实验[J]. 宇航学报, 1987, 8(1): 55-63. |
FENG M X, WANG Z A. Experiments of transonic derivatives and buffeting of rocket[J]. Journal of Astronautics, 1987, 8(1): 55-63 (in Chinese). | |
12 | 白葵, 冯明溪. 弹性模型实验技术[J]. 流体力学实验与测量, 1999, 13(1): 38-42. |
BAI K, FENG M X. Aeroelastic model and the buffet experimental technique[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1): 38-42 (in Chinese). | |
13 | 季辰, 吴彦森, 侯英昱, 等. 捆绑式运载火箭跨声速气动阻尼特性试验研究[J]. 实验流体力学, 2020, 34(6): 24-31. |
JI C, WU Y S, HOU Y Y, et al. Experimental study of aerodynamic damping characteristics of a launch vehicle with boosters in transonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 24-31 (in Chinese). | |
14 | JI C, LIU Z Q, BAI K, et al. Aerodynamic damping and buffet response test of an aeroelastic launch vehicle model in transonic flow[C]∥ Proceedings of International Conference on High-speed Vehicle Science Technology. 2018. |
15 | JI C, LI F, LIU Z Q, et al. The aerodynamic damping test of elastic launch vehicle model in transonic flow[C]∥ Proceedings of the 64th International Astronautical Congress. 2013. |
16 | 王国辉, 闫指江, 季辰, 等. 大直径整流罩运载火箭选型抖振试验[J/OL]. 北京航空航天大学学报, (2022?09?02)[2022?10?31]. . |
WANG G H, YAN Z J, JI C, et al. Study on buffeting test of large diameter fairing launch vehicles selection[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2022?09?02)[2022?10?31]. (in Chinese). | |
17 | 冉景洪, 刘子强, 胡静, 等. 减阻杆气动阻尼研究[J]. 力学学报, 2014, 46(4): 636-641. |
RAN J H, LIU Z Q, HU J, et al. Research of aero-damping for blunt with spike[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 636-641 (in Chinese). | |
18 | 刘子强, 白葵, 毛国良, 等. 锤头体弹性振动跨音速气动阻尼系数的确定[J]. 宇航学报, 2002, 23(6): 1-7. |
LIU Z Q, BAI K, MAO G L, et al. The determination of aerodynamic damping on hammerhead launch vehicles at transonic speeds[J]. Journal of Astronautics, 2002, 23(6): 1-7 (in Chinese). | |
19 | 赵玲, 季辰, 刘子强. 高速颤振模型设计中颤振主要模态的判断[J]. 航空学报, 2015, 36(4): 1112-1118. |
ZHAO L, JI C, LIU Z Q. Judgment on main flutter mode in high-speed flutter model design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1112-1118 (in Chinese). |
/
〈 |
|
〉 |