具备多模态运动能力的扑翼飞行器研究进展
收稿日期: 2023-11-06
修回日期: 2023-12-04
录用日期: 2023-12-18
网络出版日期: 2023-12-29
Research progress of flapping wing aircraft with multimodal motion ability
Received date: 2023-11-06
Revised date: 2023-12-04
Accepted date: 2023-12-18
Online published: 2023-12-29
飞行生物在不同的运动模式和栖息环境下通常会展现不同的运动特征,如自主起降、滑翔和快速机动等。这些多模态运动能力显著提升了它们对环境的适应力和生存能力,为当前扑翼飞行器设计提供了许多启示。本文回顾了昆虫和鸟类某些具有重要意义的多模态运动机理以及与扑翼飞行器工程设计相关的内容,综述了具备多模态运动能力的扑翼飞行器的设计特点,并对相关技术的发展水平和关键问题进行了分析和总结。最后,基于昆虫和鸟类的生物学机理与扑翼飞行器的发展现状,阐述了扑翼飞行器未来在多模态设计方面面临的关键难题,并展望了未来需要重点研究的方向。
王嘉鑫 , 宣建林 , 杨晓君 , 郑睿 . 具备多模态运动能力的扑翼飞行器研究进展[J]. 航空学报, 2024 , 45(18) : 29842 -029842 . DOI: 10.7527/S1000-6893.2023.29842
Flight organisms typically exhibit distinct motion characteristics in various modes of movement and habitats, such as autonomous takeoff and landing, gliding, and rapid maneuvering. These multimodal locomotion capabilities significantly enhance their adaptability and survival in different environments, offering valuable insights for the current design of flapping-wing aircraft. This paper reviews certain biologically significant multimodal locomotion mechanisms in insects and birds, along with content relevant to the engineering design of flapping-wing aircraft. It provides an overview of the design features of flapping-wing aircraft equipped with multimodal locomotion capabilities and conducts an analysis and summary of the development status and key issues related to relevant technologies. Finally, based on the biological mechanisms of insects and birds and the current state of flapping-wing aircraft development, it elucidates the critical challenges flapping-wing aircraft face in the realm of multimodal design and anticipates the directions requiring focused research in the future.
1 | 周林, 张忠海, 王建辉, 等. 扑翼飞行器的研究现状与发展[J]. 兵器装备工程学报, 2022, 43(8): 44-54. |
ZHOU L, ZHANG Z H, WANG J H, et al. Research status and development of flapping wing aircraft[J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 44-54 (in Chinese). | |
2 | LOCK R J, BURGESS S C, VAIDYANATHAN R. Multi-modal locomotion: From animal to application[J]. Bioinspiration & Biomimetics, 2013, 9(1): 011001. |
3 | KADAR F, T?TAR M O. A review on mobile robots with multimodal locomotion[M]∥ Proceedings of SYROM 2022 & ROBOTICS 2022. Cham: Springer International Publishing, 2023: 337-349. |
4 | 马东福, 宋笔锋, 宣建林, 等. 仿鸟扑翼飞行器自主起降技术研究进展[J]. 宇航学报, 2021, 42(3): 265-273. |
MA D F, SONG B F, XUAN J L, et al. Recent progress in autonomous take-off and landing technology of bird-like flapping-wing aerial vehicle[J]. Journal of Astronautics, 2021, 42(3): 265-273 (in Chinese). | |
5 | PHAN H V, PARK H C. Mimicking nature’s flyers: A review of insect-inspired flying robots[J]. Current Opinion in Insect Science, 2020, 42: 70-75. |
6 | KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
7 | SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C]∥ Proceeding of 28th Congress of the International Council of the Aeronautical Sciences; Brisbane, Australia. 2012. |
8 | YANG W Q, WANG L G, SONG B F. Dove: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84. |
9 | BIE D W, LI D C, XIANG J W, et al. Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle[J]. Aerospace Science and Technology, 2021, 112: 106557. |
10 | 徐韦佳, 姚奎, 宋阿羚, 等. 微型仿生扑翼飞行器研究综述[J]. 信息技术与网络安全, 2020, 39(10): 7-10, 17. |
XU W J, YAO K, SONG A L, et al. Survey of research on small and micro bionic flapping wing aircraft[J]. Information Technology and Network Security, 2020, 39(10): 7-10, 17 (in Chinese). | |
11 | 张弘志, 宋笔锋, 孙中超, 等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2): 024024. |
ZHANG H Z, SONG B F, SUN Z C, et al. Driving mechanism of flapping wing aircraft: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 024024 (in Chinese). | |
12 | ABAS M F BIN, MOHD RAFIE A S BIN, YUSOFF H BIN, et al. Flapping wing micro-aerial-vehicle: Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1159-1177. |
13 | WANG L, SONG B F, SUN Z C, et al. Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings[J]. Chinese Journal of Aeronautics, 2023, 36(6): 63-91. |
14 | GERDES J W, GUPTA S K, WILKERSON S A. A review of bird-inspired flapping wing miniature air vehicle designs[J]. Journal of Mechanisms and Robotics, 2012, 4(2): 1. |
15 | PHAN H V, PARK H C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions[J]. Progress in Aerospace Sciences, 2019, 111: 100573. |
16 | MUIJRES F T, JOHANSSON L C, BOWLIN M S, et al. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds[J]. PLoS One, 2012, 7(5): e37335. |
17 | HEDENSTR?M A, JOHANSSON L C. Bat flight: Aerodynamics, kinematics and flight morphology[J]. The Journal of Experimental Biology, 2015, 218(Pt 5): 653-663. |
18 | WAKELING J M, ELLINGTON C P. Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces[J]. The Journal of Experimental Biology, 1997, 200(Pt 3): 543-556. |
19 | DHAWAN S. Bird flight[J]. Sadhana, 1991, 16(4): 275-352. |
20 | KSEPKA D T. Flight performance of the largest volant bird[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 10624-10629. |
21 | LIECHTI F. Birds: blowin’ by the wind?[J]. Journal of Ornithology, 2006, 147(2): 202-211. |
22 | DVO?áK R. Aerodynamics of bird flight[J]. EPJ Web of Conferences, 2016, 114: 01001. |
23 | ELLINGTON C P. The aerodynamics of hovering insect flight. I. The quasi-steady analysis[J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 1984, 305(1122): 1-15. |
24 | WEIS-FOGH T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973, 59(1): 169-230. |
25 | DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960. |
26 | 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3): 1-10. |
YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 1-10 (in Chinese). | |
27 | CHIN D D, LENTINK D. Flapping wing aerodynamics: from insects to vertebrates[J]. The Journal of Experimental Biology, 2016, 219(Pt 7): 920-932. |
28 | LEHMANN F O. The mechanisms of lift enhancement in insect flight[J]. Die Naturwissenschaften, 2004, 91(3): 101-122. |
29 | SRYGLEY R B, THOMAS A L R. Unconventional lift-generating mechanisms in free-flying butterflies[J]. Nature, 2002, 420: 660-664. |
30 | ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384: 626-630. |
31 | DICKINSON M. Solving the mystery of insect flight[J]. Scientific American, 2001, 284(6): 48-57. |
32 | SANE S P. The aerodynamics of insect flight[J]. The Journal of Experimental Biology, 2003, 206(Pt 23): 4191-4208. |
33 | HAN J K, HUI Z, TIAN F B, et al. Review on bio-inspired flight systems and bionic aerodynamics[J]. Chinese Journal of Aeronautics, 2021, 34(7): 170-186. |
34 | MCMAHON T A. Muscles, reflexes, and locomotion[M]. Princeton, NJ: Princeton University Press, 1984. |
35 | MARDEN J H. Variability in the size, composition, and function of insect flight muscles[J]. Annual Review of Physiology, 2000, 62: 157-178. |
36 | SNODGRASS R E. How insects fly[J]. The Journal of the Royal Aeronautical Society, 1933, 37(266): 113-144. |
37 | HEERS A M, DIAL K P. Wings versus legs in the avian bauplan: Development and evolution of alternative locomotor strategies[J]. Evolution, 2015, 69(2): 305-320. |
38 | EARLS K D. Kinematics and mechanics of ground take-off in the starling sturnis vulgaris and the quail coturnix coturnix[J]. The Journal of Experimental Biology, 2000, 203(Pt 4): 725-739. |
39 | PROVINI P, TOBALSKE B W, CRANDELL K E, et al. Transition from leg to wing forces during take-off in birds[J]. The Journal of Experimental Biology, 2012, 215(Pt 23): 4115-4124. |
40 | RODERICK W R, CHIN D D, CUTKOSKY M R, et al. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact[J]. eLife, 2019, 8: e46415. |
41 | HEDENSTR?M A. Aerodynamics, evolution and ecology of avian flight[J]. Trends in Ecology & Evolution, 2002, 17(9): 415-422. |
42 | BURGERS P, CHIAPPE L M. The wing of Archaeopteryx as a primary thrust generator[J]. Nature, 1999, 399: 60-62. |
43 | DUDLEY R, BYRNES G, YANOVIAK S P, et al. Gliding and the functional origins of flight: Biomechanical novelty or necessity?[J]. Annual Review of Ecology, Evolution, and Systematics, 2007, 38(1): 179-201. |
44 | SHREYAS J, DEVRANJAN S, SREENIVAS K. Aerodynamics of bird and insect flight [J]. Journal of the Indian Institute of Science, 2011, 91(3): 315-28. |
45 | TOBALSKE B W. Biomechanics of bird flight[J]. The Journal of Experimental Biology, 2007, 210(Pt 18): 3135-3146. |
46 | TUCKER V A, PARROTT G C. Aerodynamics of gliding flight in a falcon and other birds[J]. Journal of Experimental Biology, 1970, 52(2): 345-367. |
47 | NORBERG U M. Gliding flight[M]∥ Zoophysiology. Berlin: Springer Berlin Heidelberg, 1990: 65-75. |
48 | BEAUMONT F, MURER S, BOGARD F, et al. Aerodynamic interaction of migratory birds in gliding flight[J]. Fluids, 2023, 8(2): 50. |
49 | HENNINGSSON P, HEDENSTR?M A, BOMPHREY R J. Efficiency of lift production in flapping and gliding flight of swifts[J]. PLoS One, 2014, 9(2): e90170. |
50 | STEELE J H. Spatial heterogeneity and population stability[J]. Nature, 1974, 248: 83. |
51 | ELLINGTON C P. Aerodynamics and the origin of insect flight[M]∥ Advances in insect physiology. Amsterdam: Elsevier, 1991: 171-210. |
52 | FORBES W T M. The origin of wings and venational types in insects[J]. American Midland Naturalist, 1943, 29(2): 381. |
53 | SPEDDING G. The aerodynamics of flight [M]. Berlin: Springer-Verlag, 1992: 51-111. |
54 | SHYY W, KANG C K, CHIRARATTANANON P, et al. Aerodynamics, sensing and control of insect-scale flapping-wing flight[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2016, 472(2186): 20150712. |
55 | HARVEY C, INMAN D J. Aerodynamic efficiency of gliding birds vs comparable UAVs: A review[J]. Bioinspiration & Biomimetics, 2021, 16(3): 031001. |
56 | WILSON D M. Bifunctional muscles in the thorax of grasshoppers[J]. Journal of Experimental Biology, 1962, 39(4): 669-677. |
57 | GILLOTT C. Muscles and locomotion[M]∥ Entomology. Boston, MA: Springer US, 1980: 387-419. |
58 | SHIMOMURA T, IWAMOTO H, DOAN T T V, et al. A beetle flight muscle displays leg muscle microstructure [J]. Biophysical Journal, 2016, 111(6): 1295-1303. |
59 | DE C G. Flapping wing drones show off their skills[J]. Science Robotics, 2020, 5(44): eabd0233. |
60 | LIU P, SANE S P, MONGEAU J M, et al. Flies land upside down on a ceiling using rapid visually mediated rotational maneuvers[J]. Science Advances, 2019, 5(10): eaax1877. |
61 | DICKERSON A K, SHANKLES P G, MADHAVAN N M, et al. Mosquitoes survive raindrop collisions by virtue of their low mass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9822-9827. |
62 | DUDLEY R. Mechanisms and implications of animal flight maneuverability[J]. Integrative and Comparative Biology, 2002, 42(1): 135-140. |
63 | ZANKER J M. The wing beat of Drosophila Melanogaster. III. Control[J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 1990, 327(1238): 45-64. |
64 | AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5(47): eabc2897. |
65 | HARVEY C, GAMBLE L L, BOLANDER C R, et al. A review of avian-inspired morphing for UAV flight control[J]. Progress in Aerospace Sciences, 2022, 132: 100825. |
66 | HARVEY C, BALIGA V B, WONG J C M, et al. Birds can transition between stable and unstable states via wing morphing[J]. Nature, 2022, 603: 648-653. |
67 | GILLIES J A, THOMAS A L R, TAYLOR G K. Soaring and manoeuvring flight of a steppe eagle Aquila nipalensis[J]. Journal of Avian Biology, 2011, 42(5): 377-386. |
68 | SELIM O, GOWREE E R, LAGEMANN C, et al. Peregrine falcon’s dive: Pullout maneuver and flight control through wing morphing[J]. AIAA Journal, 2021, 59(10): 3979-3987. |
69 | LIU K H. Aerodynamics of seven modes of passive flight[C]∥ Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
70 | RODERICK W R T, CUTKOSKY M R, LENTINK D. Touchdown to take-off: At the interface of flight and surface locomotion[J]. Interface Focus, 2017, 7(1): 20160094. |
71 | DIRKS J H, CLEMENTE C J, FEDERLE W. Insect tricks: Two-phasic foot pad secretion prevents slipping[J]. Journal of the Royal Society, Interface, 2010, 7(45): 587-593. |
72 | CARRUTHERS A C, THOMAS A L R, WALKER S M, et al. Mechanics and aerodynamics of perching manoeuvres in a large bird of prey[J]. The Aeronautical Journal, 2010, 114(1161): 673-680. |
73 | KLEINHEERENBRINK M, FRANCE L A, BRIGHTON C H, et al. Optimization of avian perching manoeuvres[J]. Nature, 2022, 607: 91-96. |
74 | MA D F, SONG B F, WANG Z H, et al. Development of a bird-like flapping-wing aerial vehicle with autonomous take-off and landing capabilities[J]. Journal of Bionic Engineering, 2021, 18(6): 1291-1303. |
75 | 熊康太. 自主起降扑翼机器人关键技术研究[D]. 赣州: 江西理工大学, 2018. |
XIONG K T. Research on key technology of self-taking off and landing flapping aerocraft[D].Ganzhou: Jiangxi University of Science and Technology, 2018 (in Chinese). | |
76 | DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly [J]. International Journal of Micro Air Vehicles, 2009, 1(2): 71-97. |
77 | DE CROON G C H E, GROEN M A, DE WAGTER C, et al. Design, aerodynamics and autonomy of the DelFly [J]. Bioinspiration & Biomimetics, 2012, 7(2): 025003. |
78 | TIJMONS S, KARáSEK M, DE CROON G. Attitude control system for a lightweight flapping wing MAV[J]. Bioinspiration & Biomimetics, 2018, 13(5): 056004. |
79 | DENG S H, PERCIN M, VAN OUDHEUSDEN B. Aerodynamic characterization of ‘DelFly micro’ in forward flight configuration by force measurements and flow field visualization[J]. Procedia Engineering, 2015, 99: 925-929. |
80 | DE WAGTER C, TIJMONS S, REMES B D W, et al. Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system[C]∥ 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2014: 4982-4987. |
81 | KARáSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089-1094. |
82 | DE CLERCQ K, DE KAT R, REMES B, et al. Flow visualization and force measurements on a hovering flapping-wing MAV ‘DelFly II’[C]∥ Proceedings of the 39th AIAA Fluid Dynamics Conference. Reston: AIAA, 2009. |
83 | DE CROON G C H E, PER?IN M, REMES B D W, et al. The DelFly: Design, aerodynamics, and artificial intelligence of a flapping wing robot[M]. Berlin: Springer, 2016. |
84 | WOOD R J. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2): 341-347. |
85 | MA K Y, CHIRARATTANANON P, FULLER S B, et al. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132): 603-607. |
86 | CHEN Y F, WANG H Q, HELBLING E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science Robotics, 2017, 2(11): eaao5619. |
87 | JAFFERIS N T, HELBLING E F, KARPELSON M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle[J]. Nature, 2019, 570: 491-495. |
88 | 乃日拉. 一种微型仿生水面扑翼飞行机器人的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
NAI R L. Research on a micro bionic flapping wing robot on water surface[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
89 | OZAKI T, OHTA N, JIMBO T, et al. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle[J]. Nature Electronics, 2021, 4: 845-852. |
90 | ROSHANBIN A, ALTARTOURI H, KARáSEK M, et al. COLIBRI: A hovering flapping twin-wing robot[J]. International Journal of Micro Air Vehicles, 2017, 9(4): 270-282. |
91 | PHAN H, AURECIANUS S, KANG T, et al. Attitude control mechanism in an insect-like tailless two-winged flying robot by simultaneous modulation of stroke plane and wing twist[C]∥ Proceedings of the International Micro Air Vehicle Conference and Competition. 2018. |
92 | COLEMAN D A, BENEDICT M, AMP T A, et al. Design, development and flight-testing of a robotic hummingbird[C]∥ Proceedings of the AHS 71st Annual Forum. 2015. |
93 | ZHANG J, FEI F, TU Z, et al. Design optimization and system integration of robotic hummingbird[C]∥ 2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2017: 5422-5428. |
94 | ZHAO Y, XU D, SHENG J Z, et al. Biomimetic beetle-inspired flapping air vehicle actuated by ionic polymer-metal composite actuator[J]. Applied Bionics and Biomechanics, 2018, 2018(1): 3091579. |
95 | TRUONG N T, PHAN H V, PARK H C. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot[J]. Bioinspiration and Biomimetics, 2019, 14(3): 036010. |
96 | HUDSON O A, FANNI M, AHMED S M, et al. Autonomous flight take-off in flapping wing aerial vehicles[J]. Journal of Intelligent & Robotic Systems, 2020, 98(1): 135-152. |
97 | 马东福, 宋笔锋, 薛栋, 等. 受生物启发的扑翼飞行器弹跳机构概念设计[J]. 中国机械工程, 2022, 33(15): 1869-1875, 1889. |
MA D F, SONG B F, XUE D, et al. Conceptual design of bio-inspired jumping mechanisms for flapping-wing aerial vehicles[J]. China Mechanical Engineering, 2022, 33(15): 1869-1875, 1889 (in Chinese). | |
98 | PETERSON K, FEARING R S. Experimental dynamics of wing assisted running for a bipedal ornithopter[C]∥ 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 5080-5086. |
99 | ROSE C J, MAHMOUDIEH P, FEARING R S. Coordinated launching of an ornithopter with a hexapedal robot[C]∥ 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 4029-4035. |
100 | ROSEN M H, LE PIVAIN G, SAHAI R, et al. Development of a 3.2g untethered flapping-wing platform for flight energetics and control experiments[C]∥ 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 3227-3233. |
101 | MARTíN-ALCáNTARA A, GRAU P, FERNANDEZ- FERIA R, et al. A simple model for gliding and low-amplitude flapping flight of a bio-inspired UAV[C]∥ 2019 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2019: 729-737. |
102 | LOPEZ-LOPEZ R, PEREZ-SANCHEZ V, RAMON-SORIA P, et al. A linearized model for an ornithopter in gliding flight: Experiments and simulations[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 7008-7014. |
103 | JOHNSON L, PALEY D A, BRUCK H. Modeling the flight dynamics and battery utilization of a hybrid flapping-gliding UAV[C]∥ Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
104 | LIANG S R, SONG B F, XUAN J L, et al. Active disturbance rejection attitude control for the dove flapping wing micro air vehicle in intermittent flapping and gliding flight[J]. International Journal of Micro Air Vehicles, 2020, 12: 175682932094308. |
105 | HUANG H F, HE W, FU Q, et al. A bio-inspired flapping-wing robot with cambered wings and its application in autonomous airdrop[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2138-2150. |
106 | HUANG H F, HE W, WANG J B, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5484-5494. |
107 | 黄海丰. 舵机驱动仿生扑翼飞行机器人控制系统设计与研究[D]. 北京: 北京科技大学, 2023. |
HUANG H F. Control system design and research of servo-driven bionic flapping-wing aerial robots[D].Beijing: University of Science and Technology Beijing, 2023 (in Chinese). | |
108 | MICHELSON R, HELMICK D. A reciprocating chemical muscle (RCM) for micro air vehicle entomopter flight[C]∥ Proceedings of the Association for Unmanned Vehicle Systems International. 1997. |
109 | MICHELSON R, HELMICK D, REECE S, et al. A reciprocating chemical muscle (RCM) for micro air vehicle ‘Entomopter’flight [C]∥ Proceedings of the Association for Unmanned Vehicle Systems. 1997: 429-35. |
110 | MICHELSON R, REECE S. Update on flapping wing micro air vehicle research-ongoing work to develop a flapping wing, crawling entomopter[C]∥Proceedings of the 13th Bristol International RPV/UAV Systems Conference. 1998. |
111 | MICHELSON R. Test and evaluation of fully autonomous micro air vehicles [J]. ITEA Journal, 2008: 367-74. |
112 | CHUKEWAD Y M, SINGH A T, JAMES J M, et al. A new robot fly design that is easier to fabricate and capable of flight and ground locomotion[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 4875-4882. |
113 | TU Z, HUI C, LIU L M, et al. Crawl and fly: A bio-inspired robot utilizing unified actuation for hybrid aerial-terrestrial locomotion[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7549-7556. |
114 | BIRKMEYER P, PETERSON K, FEARING R S. DASH: A dynamic 16g hexapedal robot[C]∥ 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2009: 2683-2689. |
115 | PETERSON K, BIRKMEYER P, DUDLEY R, et al. A wing-assisted running robot and implications for avian flight evolution[J]. Bioinspiration & Biomimetics, 2011, 6(4): 046008. |
116 | FEI F, TU Z, ZHANG J, et al. Learning extreme hummingbird maneuvers on flapping wing robots[C]∥ 2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 109-115. |
117 | TU Z, FEI F, DENG X Y. Bio-inspired rapid escape and tight body flip on an at-scale flapping wing hummingbird robot via reinforcement learning[J]. IEEE Transactions on Robotics, 2021, 37(5): 1742-1751. |
118 | GERDES J W, HOLNESS A, PEREZ-ROSADO A, et al. Design, manufacturing, and testing of Robo raven: Advanced Manufacturing Lab Technical Report[R]. College Park: University of Maryland, 2014. |
119 | GERDES J, HOLNESS A, PEREZ-ROSADO A, et al. Robo raven: A flapping-wing air vehicle with highly compliant and independently controlled wings[J]. Soft Robotics, 2014, 1(4): 275-288. |
120 | CHEN A, SONG B F, WANG Z H, et al. A novel actuation strategy for an agile bioinspired FWAV performing a morphing-coupled wingbeat pattern[J]. IEEE Transactions on Robotics, 2023, 39(1): 452-469. |
121 | CHIN Y W, KOK J M, ZHU Y Q, et al. Efficient flapping wing drone arrests high-speed flight using post-stall soaring[J]. Science Robotics, 2020, 5(44): eaba2386. |
122 | LUSSIER DESBIENS A, ASBECK A T, CUTKOSKY M R. Landing, perching and taking off from vertical surfaces[J]. The International Journal of Robotics Research, 2011, 30(3): 355-370. |
123 | HUANG Z F, LI S, JIANG J G, et al. Biomimetic flip-and-flap strategy of flying objects for perching on inclined surfaces[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5199-5206. |
124 | ZHENG P, XIAO F, NGUYEN P H, et al. Metamorphic aerial robot capable of mid-air shape morphing for rapid perching[J]. Scientific Reports, 2023, 13: 1297. |
125 | GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science, 2016, 352(6288): 978-982. |
126 | CHIRARATTANANON P, MA K Y, WOOD R J. Perching with a robotic insect using adaptive tracking control and iterative learning control[J]. The International Journal of Robotics Research, 2016, 35(10): 1185-1206. |
127 | TEDRAKE R, JACKOWSKI Z, CORY R, et al. Learning to fly like a bird [R]. Cambridge, MA: Massachusetts Institute of Technology, 2009. |
128 | CORY R E. Supermaneuverable perching [D]. Cambridge, MA: Massachusetts Institute of Technology, 2010. |
129 | TEDRAKE R. LQR-Trees: Feedback motion planning on sparse randomized trees [C]∥ Robotics: Science and Systems V. 2009. |
130 | MACKENZIE D. A flapping of wings[J]. Science, 2012, 335(6075): 1430-1433. |
131 | ZUFFEREY R, TORMO-BARBERO J, FELIU-TALEGóN D, et al. How ornithopters can perch autonomously on a branch[J]. Nature Communications, 2022, 13: 7713. |
132 | LI Q, LI H Z, SHEN H, et al. An aerial-wall robotic insect that can land, climb, and take off from vertical surfaces[J]. Research, 2023, 6: 0144. |
133 | TIEGS O W. The flight muscles of insects-their anatomy and histology; with some observations on the structure of striated muscle in general[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1955, 238(656): 221-348. |
134 | ELLINGTON C. Insects versus birds: The great divide (invited)[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
135 | WANG X H, HUANG Z, SUI G Z, et al. Analysis on the development trend of future UAV equipment technology[J]. Academic Journal of Engineering and Technology Science, 2019, 2(1): 114-121. |
136 | LOGAN M, VRANAS T, MOTTER M, et al. Technology challenges in small UAV development[C]∥ Proceedings of the Infotech@Aerospace. Reston: AIAA, 2005. |
137 | FARRELL HELBLING E, WOOD R J. A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles[J]. Applied Mechanics Reviews, 2018, 70(1): 010801. |
138 | REN L, YAO Y, WANG K Y, et al. Novel one-step in situ growth of SnO2 quantum dots on reduced graphene oxide and its application for lithium ion batteries[J]. Journal of Solid State Chemistry, 2019, 273: 128-131. |
/
〈 |
|
〉 |