针对运动目标的可观性增强非线性最优制导律
收稿日期: 2023-10-20
修回日期: 2023-11-21
录用日期: 2023-12-11
网络出版日期: 2023-12-26
基金资助
国家自然科学基金(52302449)
Nonlinear observability-enhancement optimal guidance law for moving targets
Received date: 2023-10-20
Revised date: 2023-11-21
Accepted date: 2023-12-11
Online published: 2023-12-26
Supported by
National Natural Science Foundation of China(52302449)
针对采用捷联式导引头的被动寻的导弹的制导信息估计问题,提出一种适用于非线性系统的可观性增强最优制导律。在固连于目标的虚拟相对直角坐标系中建立非线性运动学模型。依据克拉美-罗下界理论,将视线角速率的时间积分作为系统可观性度量,设计了以相对距离为自变量的、综合考虑系统可观性、命中精度和能量消耗的性能指标,避免了制导方案对剩余飞行时间的依赖。利用变分法求解最优问题,得到了制导律解析解。数值仿真结果表明所提制导方案能够在仅测角条件下实现导弹对运动目标的拦截。与基于线性化模型设计的可观性增强最优制导律相比,所提制导律在拦截运动目标时对系统可观性的增强更为显著,使制导信息估计误差的数值更小、收敛速度更快,能使导弹具有更高的命中精度。
吴紫怡 , 何绍溟 , 王亚东 , 李虹言 . 针对运动目标的可观性增强非线性最优制导律[J]. 航空学报, 2023 , 44(S2) : 729750 -729750 . DOI: 10.7527/S1000-6893.2023.29750
This paper proposes a nonlinear observability-enhancement optimal guidance law for moving targets of the missiles with strapdown seekers. Firstly, a nonlinear relative motion model between the missile and the moving target is constructed based on a virtual relative coordinate system with its origin fixed at the target, so that the linearization process can be avoided under the condition of small-angle assumption. Secondly, the integral of the LOS rate is leveraged as the measure of target observability based on the Cramer-Rao lower bound theory. The performance index to be optimized is designed by considering target observability, guidance accuracy and energy consumption. In addition, the dependence on the time-to-go is removed by utilizing the relative range as the independent variable. The analytical solution for the guidance law is derived by using calculus of variation. The simulation results show that the proposed guidance law can intercept moving targets using bearing-only measurements. Compared with the observability-enhancement optimal guidance laws based on the linearized model, the proposed guidance law can enhance the system observability more significantly, which results in a smaller value of the estimation error of guidance information, faster convergence, and higher hit accuracy of the missile.
1 | WANG J N, PENG X L, WANG Z H. Research on line of sight angular rate estimation of strapdown seeker[C]∥ Proc SPIE 12500, Fifth International Conference on Mechatronics and Computer Technology Engineering (MCTE 2022), 2022, 12500: 576-583. |
2 | 张铎, 宋建梅, 赵良玉, 等. 考虑非高斯相关噪声的视线角速率提取算法[J]. 航空学报, 2021, 42(7): 324629. |
ZHANG D, SONG J M, ZHAO L Y, et al. Extraction algorithm for line of sight angular rate in non-Gaussian correlative noise environment[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324629 (in Chinese). | |
3 | HOU B W, WANG D Y, WANG J Q, et al. Optimal maneuvering for autonomous relative navigation using monocular camera sequential images[J]. Journal of Guidance Control Dynamics, 2021, 44(11): 1947-1960. |
4 | 钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2013:102-112. |
QIAN X F, LIN R X, ZHAO Y N. Flight dynamics of missile[M]. Beijing:Beijing Institute of Technology Press, 2013:102-112 (in Chinese). | |
5 | KIM T H, LEE C H, TAHK M J. Time-to-go polynomial guidance with trajectory modulation for observability enhancement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73. |
6 | LEE C H, KIM T H, TAHK M J. Biased PNG for target observability enhancement against nonmaneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 2-17. |
7 | LEE H I, SHIN H S, TSOURDOS A. Weaving guidance for missile observability enhancement[J]. IFAC-PapersOnLine, 2017, 50: 15197-15202. |
8 | ROH H, SHIM S W, TAHK M J. Maneuver algorithm for bearings-only target tracking with acceleration and field of view constraints[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(2): 423-432. |
9 | LI B, TANG P, XU H T, et al. Terminal impact angle control guidance law considering target observability[J]. Aerospace, 2022, 9(4): 193. |
10 | WANG T N, TANG S J, GUO J, et al. Two-phase optimal guidance law considering impact angle constraint with bearings-only measurements[J]. International Journal of Aerospace Engineering, 2017, 2017: 1380531. |
11 | MOK S H, PI J, BANG H. One-step rendezvous guidance for improving observability in bearings-only navigation[J]. Advances in Space Research, 2020, 66(11): 2689-2702. |
12 | LEE D, TAHK M J, LEE C H. Optimal threshold of intermittent maneuver for target observability improvement[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(4): 911-922. |
13 | 花文华, 张金鹏. 纯方位量测下增强可观测性的微分对策制导律[J]. 哈尔滨工业大学学报, 2023, 55(4): 122-129. |
HUA W H, ZHANG J P. Differential game guidance law for enhanced observability with bearings-only measurements[J]. Journal of Harbin Institute of Technology, 2023, 55(4): 122-129 (in Chinese). | |
14 | YUAN H, LI D X. Deep reinforcement learning for rendezvous guidance with enhanced angles-only observability[J]. Aerospace Science and Technology, 2022, 129: 107812. |
15 | HE S M, SHIN H S, RA W S, et al. Observability-enhancement optimal guidance law[C]∥ 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS). Piscataway: IEEE Press, 2019: 315-324. |
16 | WANG Y D, WANG J, HE S M, et al. Optimal guidance with active observability enhancement for scale factor error estimation of strapdown seeker[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4347-4362. |
17 | MISHLEY A, SHAFERMAN V. Optimal guidance with an intercept angle constraint for varying speed adversaries[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
18 | MUDRIK L, OSHMAN Y. Information-enhancement via trajectory shaping in Bayesian decision-directed stochastic guidance[C]∥ AIAA SCITECH 2023 Forum. Reston: AIAA, 2023. |
19 | LI J N, NING Z A, HE S M, et al. Three-dimensional bearing-only target following via observability-enhanced helical guidance[J]. IEEE Transactions on Robotics, 2023, 39(2): 1509-1526. |
20 | KANG H L, WANG P Y, WEI S H, et al. Three-dimensional impact-time-constrained proportional navigation guidance using range-varying gain[J]. Aerospace Science and Technology, 2023, 140: 108419. |
21 | 李昊键, 刘远贺, 梁彦刚, 等. 考虑视场角约束的碰撞角控制预设性能制导律[J]. 航空学报, 2023, 44(15): 528764. |
LI H J, LIU Y H, LIANG Y G, et al. Prescribed performance guidance law with field-of-view and impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528764 (in Chinese). | |
22 | 李国飞, 李博皓, 吴云洁, 等. 多群组飞行器攻击时间控制协同制导方法[J]. 宇航学报, 2023, 44(1): 110-118. |
LI G F, LI B H, WU Y J, et al. Cooperative guidance law with impact time control for clusters of flight vehicles[J]. Journal of Astronautics, 2023, 44(1): 110-118 (in Chinese). | |
23 | 王亚宁, 王辉, 林德福, 等. 基于虚拟视角约束的机动目标拦截制导方法[J]. 航空学报, 2022, 43(1): 324799. |
WANG Y N, WANG H, LIN D F, et al. Guidance method for maneuvering target interception based on virtual look angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324799 (in Chinese). | |
24 | HE S M, SHIN H S, TSOURDOS A. Trajectory optimization for target localization with bearing-only measurement[J]. IEEE Transactions on Robotics, 2019, 35(3): 653-668. |
/
〈 |
|
〉 |