基于惯性导航与数据链的飞机间相对定位方法
收稿日期: 2023-09-18
修回日期: 2023-10-17
录用日期: 2023-12-06
网络出版日期: 2023-12-26
Relative aircraft positioning based on inertial navigation and datalink
Received date: 2023-09-18
Revised date: 2023-10-17
Accepted date: 2023-12-06
Online published: 2023-12-26
飞行器编队飞行成为当前一种新兴的飞行器工作模式,编队内飞行器间准确的相对定位是编队飞行的基本保障。全球卫星导航系统(GNSS)拒止环境下,飞行器失去全局定位信息,仅依靠局部定位信息难以获得飞行器间的相对定位信息。为了解决GNSS拒止环境下编队内飞机间的相对定位问题,提出了一种数据链与惯性导航相结合的相对定位方法。首先,采用惯性导航的方法实时解算出每一架飞行器的定位信息,并通过自身搭载的数据链将定位信息发送给其他飞行器;其次,每架飞行器基于其接收的其他飞行器的信息及数据链测量信息计算编队内飞行器间的相对位置;最后,基于飞行器连续时间序列的惯导信息及数据链测量信息,建立相对位姿优化因子图实时解算飞行器间的相对位姿。以2架飞行器编队为例进行了仿真与实验验证,结果表明该方法能够实时估计编队内飞行器的相对位置,实验结果显示:该方法将数据链测量的距离误差降低了76%,能够为编队飞行提供精准可靠的相对位置信息。
李坤 , 布树辉 , 贾旋 , 董逸飞 , 陈霖 . 基于惯性导航与数据链的飞机间相对定位方法[J]. 航空学报, 2024 , 45(15) : 329594 -329594 . DOI: 10.7527/S1000-6893.2023.29594
Formation flying has emerged as a prominent aircraft operational mode, necessitating precise relative positioning of aircraft within the formation as a fundamental requirement. In Global Navigation Satellite System (GNSS)-denied environments, aircraft experience a loss of global positioning information, making it challenging to derive relative aircraft positioning solely from local data sources. To address the relative positioning challenge among aircraft within a formation in GNSS-denied environments, this paper introduces a method that integrates data link and inertial navigation. Firstly, the inertial navigation method is employed to give a real-time calculation of the positioning information of each aircraft, which is then transmitted to other aircraft through its respective data link. Subsequently, each aircraft conducts measurements of the relative positions between the aircraft in the formation by using the received information from other aircraft and the data link. Finally, leveraging the continuous time series of inertial navigation data and data link measurements, a relative pose optimization factor graph is constructed to solve the relative poses between the aircraft in real time. Simulation and experimental verification are undertaken, employing a two-aircraft formation as a case study. The outcomes indicate that this method proposed enables real-time estimation of the relative positions of aircraft within the formation. Experimental results demonstrate that this method reduces the distance error measured by the data link by 76%, and can provide accurate and reliable relative position information for formation flight.
1 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. |
JIA Y N, TIAN S Y, LI Q. Review on research progress of UAV cluster[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup 1): 723738 (in Chinese). | |
2 | 姜霞, 曾宪琳, 孙健, 等. 多飞行器的分布式优化研究现状与展望[J]. 航空学报, 2021, 42(4): 524551. |
JIANG X, ZENG X L, SUN J, et al. Research status and prospect of distributed optimization for multiple aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524551 (in Chinese). | |
3 | SHEN J W, WANG S Z, ZHAI Y, et al. Cooperative relative navigation for multi‐UAV systems by exploiting GNSS and peer‐to‐peer ranging measurements[J]. IET Radar, Sonar & Navigation, 2021, 15(1): 21-36. |
4 | XIONG J, XIONG Z, CHEONG J W, et al. Cooperative positioning for low-cost close formation flight based on relative estimation and belief propagation[J]. Aerospace Science and Technology, 2020, 106: 106068. |
5 | 岳敬轩, 王红茹, 朱东琴, 等. 基于改进粒子滤波的无人机编队协同导航算法[J]. 航空学报, 2023, 44(14): 327995. |
YUE J X, WANG H R, ZHU D Q, et al. UAV formation cooperative navigation algorithm based on improved particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 327995 (in Chinese). | |
6 | 谢启龙, 宋龙, 鲁浩, 等. 协同导航技术研究综述[J]. 航空兵器, 2019, 26(4): 23-30. |
XIE Q L, SONG L, LU H, et al. Review of collaborative navigation technology[J]. Aero Weaponry, 2019, 26(4): 23-30 (in Chinese). | |
7 | NASSER G, HATILIMA JASPER V, HUBERT R, et al. A review of GNSS-independent UAV navigation techniques[J]. Robotics and Autonomous Systems, 2022, 152: 104069. |
8 | DEHGHANI M A, MENHAJ M B. Integral sliding mode formation control of fixed-wing unmanned aircraft using seeker as a relative measurement system[J]. Aerospace Science and Technology, 2016, 58: 318-327. |
9 | FAIGL J, KRAJNíK T, CHUDOBA J, et al. Low-cost embedded system for relative localization in robotic swarms[C]∥ 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 993-998. |
10 | WALTER V, SASKA M, FRANCHI A. Fast mutual relative localization of UAVs using ultraviolet LED markers[C]∥ 2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 1217-1226. |
11 | SANSONE F, BRANZ F, FRANCESCONI A. A relative navigation sensor for CubeSats based on LED fiducial markers[J]. Acta Astronautica, 2018, 146: 206-215. |
12 | SANSONE F, FRANCESCONI A, OLIVIERI L, et al. Low-cost relative navigation sensors for miniature spacecraft and drones[C]∥ 2015 IEEE Metrology for Aerospace (MetroAeroSpace). Piscataway: IEEE Press, 2015: 389-394. |
13 | WANG Q Q, CHAN K F, SCHWEIZER K, et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery[J]. Science Advances, 2021, 7(9): eabe5914. |
14 | CHATTERJEE S, CHAKRABORTY S, NATH A, et al. Near-real-time detection of craters: A YOLO v5 based approach[C]∥ 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS). Piscataway: IEEE Press, 2023: 1-4. |
15 | 刘俊成, 张京娟, 冯培德. 基于相互测距信息的机群组网协同定位技术[J]. 北京航空航天大学学报, 2012, 38(4): 541-545. |
LIU J C, ZHANG J J, FENG P D. Swarming aircraft collaborative localization based on mutual rangings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4): 541-545 (in Chinese). | |
16 | CAO S, QIN H L, CONG L, et al. Multi-slots joint MLE relative navigation algorithm based on INS/JTIDS/BA for datalink network[J]. IEEE Access, 2020, 8: 136795-136807. |
17 | 严飞, 傅金琳, 张崇猛, 等. 惯性信息辅助的源信息不同步的数据链相对定位方法[J]. 中国惯性技术学报, 2020, 28(3): 360-364. |
YAN F, FU J L, ZHANG C M, et al. INS aided relative positioning method of data link with unsynchronized source information[J]. Journal of Chinese Inertial Technology, 2020, 28(3): 360-364 (in Chinese). | |
18 | 郝菁, 蔚保国, 何成龙. 基于惯导/数据链的动态相对定位方法[J]. 计算机测量与控制, 2018, 26(10): 191-195. |
HAO J, YU B G, HE C L. Dynamic relative positioning method based on inertial navigation and data link[J]. Computer Measurement & Control, 2018, 26(10): 191-195 (in Chinese). | |
19 | 钟日进, 陈琪锋. 利用集群内测距和对目标测向的协同定位方法[J]. 航空学报, 2020, 41(S1): 723768. |
ZHONG R J, CHEN Q F. Collaborative positioning method using intra-cluster ranging and direction finding of targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723768 (in Chinese). | |
20 | 于卓静, 孙永荣, 朱云峰, 等. 测角测距信息下的双机协同高精度定位算法[J]. 兵工自动化, 2019, 38(2): 1-5. |
YU Z J, SUN Y R, ZHU Y F, et al. High precision algorithm of dual-aircraft cooperative locating with angle and distance information[J]. Ordnance Industry Automation, 2019, 38(2): 1-5 (in Chinese). | |
21 | 赖玮清, 万九卿. 基于路径和算法的飞行器集群分布式相对定位[J]. 航空学报, 2024, 45(4): 328735. |
LAI W Q, WAN J Q. Distributed relative positioning of aircraft group based on path-sum algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328735. | |
22 | 牛皓飞, 蔡庆中, 李健, 等. 基于图优化的通信受限环境下协同导航方法[J]. 航空学报, 2023, 44(11): 327342. |
NIU H F, CAI Q Z, LI J, et al. Method for cooperative navigation in constrained environment based on graph optimization[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 327342 (in Chinese). | |
23 | 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019. |
YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi’an: Northwestern Polytechnical University Press, 2019 (in Chinese). | |
24 | 赵龙. 惯性导航原理与系统应用设计[M]. 北京: 北京航空航天大学出版社, 2020. |
ZHAO L. Inertial navigation principle and system application design[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2020 (in Chinese). |
/
〈 |
|
〉 |