集群智能与协同控制

分布式自适应事件触发四旋翼无人机编队控制

  • 郭洪振 ,
  • 陈谋 ,
  • 戴永东 ,
  • 王茂飞
展开
  • 1.南京航空航天大学 自动化学院,南京 211106
    2.国网泰州供电公司,泰州 225300
.E-mail: chenmou@nuaa.edu.cn

收稿日期: 2023-11-28

  修回日期: 2023-12-01

  录用日期: 2023-12-06

  网络出版日期: 2023-12-21

基金资助

国家重点研发计划(2023YFB4704400);国家自然科学基金(U2013201);江苏省科技计划专项资金(BZ2023057)

Distributed adaptive event⁃triggered formation control for QUAVs

  • Hongzhen GUO ,
  • Mou CHEN ,
  • Yongdong DAI ,
  • Maofei WANG
Expand
  • 1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.State Grid Taizhou Power Supply Company,Taizhou 225300,China

Received date: 2023-11-28

  Revised date: 2023-12-01

  Accepted date: 2023-12-06

  Online published: 2023-12-21

Supported by

National Key Research and Development Program of China(2023YFB4704400);National Natural Science Foundation of China(U2013201);Jiangsu Province Special Funds for Science and Technology(BZ2023057)

摘要

针对存在未知外部干扰与计算资源受限的四旋翼无人机编队系统,提出了一种分布式自适应事件触发编队控制方法。首先,使用参数自适应方法来处理未知外部干扰对编队系统造成的不利影响,且参数自适应律仅在事件触发时刻更新,从而降低计算量。其次,基于参数自适应方法与事件触发机制设计分布式编队控制器。此外,通过李雅普诺夫方法证明了闭环系统内所有信号的有界性。最后,通过室内实际飞行试验验证了所提算法的有效性与可靠性。

本文引用格式

郭洪振 , 陈谋 , 戴永东 , 王茂飞 . 分布式自适应事件触发四旋翼无人机编队控制[J]. 航空学报, 2023 , 44(S2) : 729917 -729917 . DOI: 10.7527/S1000-6893.2023.29917

Abstract

In this paper, a distributed adaptive event-triggered formation control method is proposed for Quadrotor Unmanned Aerial Vehicles (QUAVs) with unknown external disturbances and limited computational resources. Firstly, the parameter adaptive method is used to deal with the adverse effects of unknown external disturbances, and the parameter updating law is updated only at event-triggered instants to further reduce the computational cost. Then, the distributed formation controller is developed based on the parameter adaptive method and the event-triggered mechanism. Moreover, the uniformly ultimately bounded stability of the control system is accomplished by the Lyapunov theorem. Finally, flight experiments are implemented to verify the effectiveness and reliability of the proposed control method.

参考文献

1 ZHAO W B, LIU H, LEWIS F L, et al. Robust visual servoing control for ground target tracking of quadrotors[J]. IEEE Transactions on Control Systems Technology202028(5): 1980-1987.
2 LIANG X, FANG Y C, SUN N, et al. A novel energy-coupling-based hierarchical control approach for unmanned quadrotor transportation systems[J]. IEEE/ASME Transactions on Mechatronics201924(1): 248-259.
3 H?NIG W, PREISS J A, SATISH KUMAR T K, et al. Trajectory planning for quadrotor swarms[J]. IEEE Transactions on Robotics201834(4): 856-869.
4 JIN X Z, CHE W W, WU Z G, et al. Robust adaptive general formation control of a class of networked quadrotor aircraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202252(12): 7714-7726.
5 GUO H Z, CHEN M, JIANG Y H, et al. Distributed adaptive human-in-the-loop event-triggered formation control for QUAVs with quantized communication[J]. IEEE Transactions on Industrial Informatics202319(6): 7572-7582.
6 ZHOU N, CHENG X D, SUN Z Q, et al. Fixed-time cooperative behavioral control for networked autonomous agents with second-order nonlinear dynamics[J]. IEEE Transactions on Cybernetics202152(9): 9504-9518.
7 LIAO F, TEO R, WANG J L, et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Transactions on Control Systems Technology201725(1): 270-277.
8 NGUYEN N P, OH H, MOON J. Continuous nonsingular terminal sliding-mode control with integral-type sliding surface for disturbed systems: Application to attitude control for quadrotor UAVs under external disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems202258(6): 5635-5660.
9 WEN G X, GE S S, TU F W, et al. Artificial potential-based adaptive H synchronized tracking control for accommodation vessel[J]. IEEE Transactions on Industrial Electronics201764(7): 5640-5647.
10 ASIGNACION A, SUZUKI S, NODA R, et al. Frequency-based wind gust estimation for quadrotors using a nonlinear disturbance observer[J]. IEEE Robotics and Automation Letters20227(4): 9224-9231.
11 SHAO S Y, CHEN M, HOU J, et al. Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer[J]. IEEE/ASME Transactions on Mechatronics202126(2): 689-699.
12 HUA H A, FANG Y C, ZHANG X T, et al. A novel robust observer-based nonlinear trajectory tracking control strategy for quadrotors[J]. IEEE Transactions on Control Systems Technology202129(5): 1952-1963.
13 WANG F, GAO H M, WANG K, et al. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems202157(2): 834-847.
14 张豪, 王鹏, 汤国建, 等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报202344(15): 528494.
  ZHANG H, WANG P, TANG G J, et al. Event-triggered fast finite time control for hypersonic morphing vehicles[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528494 (in Chinese).
15 CHEN Y J, LIANG J C, WU Y N, et al. Adaptive sliding-mode disturbance observer-basedfinite-time control for unmanned aerial manlpulator with prescribed performance[J]. IEEE Transactions on Cybernetics202353(5): 3263-3276.
16 WANG H, SHAN J J. Fully distributed event-triggered formation control for multiple quadrotors[J]. IEEE Transactions on Industrial Electronics202370(12): 12566-12575.
17 SUN Z Y, LIU Q C, HUANG N, et al. Cooperative event-based rigid formation control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(7): 4308-4320.
18 ZHANG Z R, WEN C Y, XING L T, et al. Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only[J]. IEEE Transactions on Automatic Control202267(8): 4218-4225.
19 WANG A Q, LIU L, QIU J B, et al. Event-triggered robust adaptive fuzzy control for a class of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems201927(8): 1648-1658.
20 YI X L, LIU K, DIMAROGONAS D V, et al. Dynamic event-triggered and self-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control201964(8): 3300-3307.
21 陈浩岚, 王鹏, 汤国建. 变形飞行器输出误差受限与输入饱和控制方法[J]. 航空学报202344(15): 528762.
  CHEN H L, WANG P, TANG G J. Attitude control scheme for morphing vehicles with output error constraints and input saturation[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528762 (in Chinese).
22 ZHU C J, CHEN J C, IWASAKI M, et al. Event-triggered deep learning control of quadrotors for trajectory tracking[J]. IEEE Transactions on Industrial Electronics202471(3): 2726-2736.
23 YANG S, XIAN B. Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload[J]. IEEE Transactions on Industrial Electronics202067(3): 2054-2064.
24 CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica201147(3): 452-465.
25 DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics201764(6): 5014-5024.
26 LI Y X, YANG G H. Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications[J]. IEEE Transactions on Neural Networks and Learning Systems201829(12): 6242-6251.
27 SHAN Q H, CHEN Z Z, LI T S, et al. Consensus of multi-agent systems with impulsive perturbations and time-varying delays by dynamic delay interval method[J]. Communications in Nonlinear Science and Numerical Simulation201978: 104890.
28 LI X D, PENG D X, CAO J D. Lyapunov stability for impulsive systems via event-triggered impulsive control[J]. IEEE Transactions on Automatic Control202065(11): 4908-4913.
文章导航

/