圆顶形层联机织预制体参数化几何建模
收稿日期: 2023-09-08
修回日期: 2023-10-08
录用日期: 2023-12-18
网络出版日期: 2023-12-21
基金资助
国家科技重大专项(2017-Ⅶ-0011-0177)
Parametric geometric modeling of dome⁃shaped multi⁃layer interlock woven preform
Received date: 2023-09-08
Revised date: 2023-10-08
Accepted date: 2023-12-18
Online published: 2023-12-21
Supported by
National Science and Technology Major Project (2017-Ⅶ-0011-0177)
通过一体化仿形织造技术制备的圆顶形层联机织预制体(DIWP)具有可设计性好、结构稳定、承载能力强等特点。探究DIWP微细观结构并构建其参数化几何模型,对于预测DIWP力学性能并指导其工艺设计十分重要。基于预制体宏观结构特征、织造工艺参数对DIWP参数化模型构造方法进行了全面研究,并使用SolidWorks软件建立了实体几何模型。结果表明:通过引入纬斜角可以描述DIWP纱线的空间坐标与运动路径之间的关系;一元二次函数形式的抛物线凸透镜形纱线截面假设适用于DIWP;讨论3种不同细观结构的DIWP参数化模型,进一步得到了具有系统性、可靠性、普适性研究价值的DIWP的参数化模型构造理论;模型解析式全部由MATLAB软件推导得出,可求解且唯一;参数化模型能够有效表征DIWP的空间拓扑关系、计算纤维体积含量,与实测值对比,误差为-3.43%。所得结论为DIWP的仿真模拟提供了理论依据,并对其实际制备工艺的设计具有指导意义。
张长龙 , 陈利 , 王静 , 岳万里 , 史晓平 . 圆顶形层联机织预制体参数化几何建模[J]. 航空学报, 2024 , 45(16) : 429556 -429556 . DOI: 10.7527/S1000-6893.2023.29556
Dome-shaped Multi-layer Interlock Woven Preform (DIWP) prepared by integrated copying weaving technology has the characteristics of good design, stable structure and strong bearing capacity. Therefore, it is crucial to investigate the microstructure of DIWP and construct its parametric geometric model for predicting the mechanical properties of DIWP and guiding its process design. The construction method of DIWP parametric model is comprehensively studied based on the preform macro-structure characteristics and weaving process parameters, and the solid geometric model is established by using SolidWorks software. The results show that the relationship between the spatial coordinates and the motion path of DIWP yarn can be described by introducing the weft inclination. The assumption of parabolic convex lens yarn section in the form of quadratic function with one variable is applicable to DIWP. Three kinds of DIWP parametric models with different meso-structures are discussed, and subsequently, the theory of DIWP parametric model construction with systematic, reliable and universal research value is further obtained. The analytical formulas of the model are entirely derived by MATLAB software, and they are solvable and unique. The parametric model can effectively characterize the spatial topology relationship of DIWP and calculate the fiber volume content. Compared with the measured values, the error is -3.43%. The results provided a theoretical basis for the simulation of DIWP and had guiding significance for the design of the actual preparation process.
1 | RUSIN M Y, VASILENKO V V, ROMASHIN V G, et al. Composite materials for aircraft radioparent domes[J]. Refractories and Industrial Ceramics, 2015, 55(5): 391-395. |
2 | YANG D, CHEN X. Multi-layer pattern creation for seamless front female body armor panel using angle-interlock woven fabrics[J]. Textile Research Journal, 2017, 87(3): 381-386. |
3 | GOHARI S, SHARIFI S, BURVILL C, et al. Localized failure analysis of internally pressurized laminated ellipsoidal woven GFRP composite domes: Analytical, numerical, and experimental studies[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1235-1250. |
4 | DAVEY S, DAS R, CANTWELL W J, et al. Forming studies of carbon fibre composite sheets in dome forming processes[J]. Composite Structures, 2013, 97: 310-316. |
5 | WANG H X, BAI L Y, HUI Y B. Hemispherical molding experiment and simulation of unidirectional carbon fiber prepreg[J]. International Journal of Polymer Science, 2022, 2022: 1196567. |
6 | MEI M, HE Y J, YANG X J, et al. Analysis and experiment of deformation and draping characteristics in hemisphere preforming for plain woven fabrics[J]. International Journal of Solids and Structures, 2021, 222-223: 111039. |
7 | 张长龙, 陈利, 王静, 等. 防弹头盔用三维机织预制体的曲面成型性研究[J]. 兵工学报, 2024, 45(6): 2017-2024. |
ZHANG C L, CHEN L, WANG J, et al. Study on curved formability of 3D woven preform for ballistic helmet [J]. Acta Armamentarii, 2024, 45(6): 2017-2024 (in Chinese). | |
8 | DANGORA L M, MITCHELL C J, SHERWOOD J, et al. Deep-drawing forming trials on a cross-ply thermoplastic lamina for helmet preform manufacture[J]. Journal of Manufacturing Science and Engineering, 2017, 139(3): 031009. |
9 | WANG W, ZHU J H, ZHANG R Y, et al. Numerical characterization and simulation of the three-dimensional tubular woven fabric[J]. Journal of Industrial Textiles, 2018, 47(8): 2112-2127. |
10 | 邵明正. 2.5D结构筒状立体机织物细观分析及建模[J]. 山东纺织科技, 2016, 57(6): 41-45. |
SHAO M Z. Meso-analysis and modeling of tubular woven fabric with 2.5D structure[J]. Shandong Textile Science & Technology, 2016, 57(6): 41-45 (in Chinese). | |
11 | YANG Z, JIAO Y N, XIE J B, et al. Effect of weaving parameters on fiber structure of 3D woven preforms: a Micro-CT investigation[J]. Journal of Composite Materials, 2022, 56(16): 2609-2620. |
12 | 王宏越, 王兵, 方国东, 等. 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报, 2023, 44(9): 227478. |
WANG H Y, WANG B, FANG G D, et al. Digital element modelling and analysis of 2.5D woven shallow cross bending composites[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 227478 (in Chinese). | |
13 | XIE J B, LIU C, YANG Z, et al. Mechanical modeling of textile composites using fiber-reinforced voxel models[J]. Journal of Composite Materials, 2020, 54(19): 2529-2538. |
14 | ZHANG X, ZHANG S, JIA Y F, et al. A parameterized and automated modelling method for 3D orthogonal woven composite RVEs considering yarn geometry variations[J]. Composite Structures, 2023, 305: 116496. |
15 | 杨彩云, 李嘉禄. 基于纱线真实形态的三维机织复合材料细观结构及其厚度计算[J]. 复合材料学报, 2005, 22(6): 178-182. |
YANG C Y, LI J L. Microstructure and thickness equation of 3d woven composites based on yarn’s true configuration[J]. Acta Materiae Compositae Sinica, 2005, 22(6): 178-182 (in Chinese). | |
16 | DASH B P, BEHERA B K, MISHRA R, et al. Modeling of internal geometry of 3D woven fabrics by computation method[J]. Journal of the Textile Institute, 2013, 104(3): 312-321. |
17 | GUO C, ZHANG H J, WANG Y L, et al. Parametric modeling of 2.5D woven composites based on computer vision feature extraction[J]. Composite Structures, 2023, 321: 117234. |
18 | 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(8): 76-83. |
REN L B, CHEN L, JIAO W. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions[J]. Journal of Textile Research, 2021, 42(8): 76-83 (in Chinese). | |
19 | AYRANCI C, CAREY J P. Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry[J]. Composites Part B: Engineering, 2010, 41(3): 229-235. |
20 | BILISIK K. Multiaxis three-dimensional circular woven preforms?“radial crossing weaving” and “radial in?out weaving”: preliminary investigation of feasibility of weaving and methods[J]. Journal of the Textile Institute, 2010, 101(11): 967-987. |
21 | ZHOU H L, PAN Z X, GIDEON R K, et al. Experimental and numerical investigation of the transverse impact damage and deformation of 3-D circular braided composite tubes from meso-structure approach[J]. Composites Part B: Engineering, 2016, 86: 243-253. |
22 | 刘耀荣, 王锐英. 等距线的性质及其应用[J]. 北京建筑工程学院学报, 1995, 11(3): 97-103. |
LIU Y R, WANG R Y. The characteristics and applications of the equidistance lines[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 1995, 11(3): 97-103 (in Chinese). | |
23 | 熊玉学, 刘庆照. 计算抛物线及椭圆弧长的近似公式[J]. 东北林业大学学报, 1991, 19(2): 112-115. |
XIONG Y X, LIU Q Z. Approximate formula for calculating parabola and the length of ellipse arc[J]. Journal of Northeast Forestry University, 1991, 19(2): 112-115 (in Chinese). |
/
〈 |
|
〉 |