基于引气控制的热气防冰优化设计方法
收稿日期: 2023-07-10
修回日期: 2023-07-16
录用日期: 2023-08-03
网络出版日期: 2023-12-20
基金资助
国家科技重大专项(J2019-III-0010-0054)
Optimization design method for hot air anti⁃icing system based on bleed air control
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-03
Online published: 2023-12-20
Supported by
National Science and Technology Major Project(J2019-III-0010-0054)
飞机在飞越含有过冷水滴的云层时,机翼、发动机进气道表面容易发生结冰,危害飞行安全。热气防冰是应用最为广泛的结冰防护手段之一,为了保证在较低的引气量下仍能满足防冰要求,提出了基于引气控制的热气防冰优化设计方法。基于本征正交分解和径向基函数神经网络建立热气防冰性能快速预测方法,实现对防冰优化设计空间内结构参数变化后对应表面温度、溢流水质量流量分布等的快速评估。基于差分进化算法、快速非支配排序遗传算法开展热气防冰系统的单目标优化设计和多目标优化设计,并使用热气防冰性能快速预测方法评估种群个体的目标函数和约束函数。在满足优化问题约束条件的前提下,单目标优化设计所得热气防冰结构较基础设计所需引气量下降了23.41%;多目标优化设计可以得到一系列优化的防冰结构,设计人员可以通过评估减小引气量和增强防冰性能两方面目标的权重来选择最为合适的热气防冰结构设计方案。
杨倩 , 郑皓冉 , 程显达 , 董威 . 基于引气控制的热气防冰优化设计方法[J]. 航空学报, 2023 , 44(S2) : 729285 -729285 . DOI: 10.7527/S1000-6893.2023.29285
In-flight icing occurs on wings and engine inlets when aircraft fly through clouds containing supercooled water droplets, which is detrimental to flight safety. Hot air anti-icing is one of the most widely used anti-icing technologies. To ensure that anti-icing requirements are met with lower bleed air quantities, an optimization design method based on bleed air control for hot air anti-icing system is developed. A fast prediction method for hot air anti-icing performance based on Proper Orthogonal Decomposition and Radial Basis Function neural networks is constructed, enabling rapid evaluation of the surface temperature and runback water mass flow rate distributions for different anti-icing configurations within the anti-icing optimization design space. Genetic algorithms and Nondominated Sorting Genetic Algorithms are employed for the single- and multi-objective optimization problems of the hot air anti-icing system. The fast prediction method for hot air anti-icing performance is used to evaluate the objective and constraint functions of individuals in the population. While satisfying the constraint functions of the optimization problem, the single-objective optimized design can reduce the required bleed air quantity by 23.41% compared to the baseline design. The multi-objective optimization design produces a series of optimized anti-icing configurations, and the design engineers can choose the most suitable anti-icing configuration design by evaluating the weights of both bleed air reduction and anti-icing performance enhancement.
1 | 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734. |
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese). | |
2 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
3 | 周莉, 徐浩军, 龚胜科, 等. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报, 2010, 20(6): 105-110. |
ZHOU L, XU H J, GONG S K, et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal (CSSJ), 2010, 20(6): 105-110 (in Chinese). | |
4 | 陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 626973. |
CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626973 (in Chinese). | |
5 | GUO Z Q, GUO X F, YANG Q, et al. Heat transfer characteristics of unexpanded jet impingement in piccolo hot air anti-icing chamber[J]. Applied Thermal Engineering, 2022, 200: 117540. |
6 | PAPADAKIS M, WONG S H, YEONG H W, et al. Icing tunnel experiments with a hot air anti-icing system: AIAA-2008-0444[R]. Reston: AIAA, 2008. |
7 | GUO Z Q, ZHENG M, YANG Q, et al. Effects of flow parameters on thermal performance of an inner-liner anti-icing system with jets impingement heat transfer[J]. Chinese Journal of Aeronautics, 2021, 34(9): 119-132. |
8 | CABLER S. Aircraft Ice Protection: AC_20-73A[R]. Federal Aviation Administration, 2016. |
9 | SANTOS L, DOMINGOS R, MARIA R, et al. Sensitivity analysis of a bleed air anti-ice thermal model to geometrical and operational parameters: AIAA-2008-0445[R]. Reston: AIAA, 2008. |
10 | 杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992. |
YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626992 (in Chinese). | |
11 | PELLISSIER M P C, HABASHI W G, PUEYO A. Optimization via FENSAP-ICE of aircraft hot-air anti-icing systems[J]. Journal of Aircraft, 2011, 48(1): 265-276. |
12 | NIU J, SANG W, QIU A, et al. An optimization of anti-icing chamber based on POD and KRIGING[C]∥32nd Congress of the International Council of the Aeronautical Sciences. Washington,D.C.: ICAS, 2020:1132. |
13 | CARDOSO J M P, COUTINHO J G F, DINIZ P C. Embedded computing for high performance: Efficient mapping of computations using customization, code transformations and compilation[M]. Cambridge: Morgan Kaufmann Publishers, an imprint of Elsevier, 2017. |
14 | NAYAK S. Fundamentals of optimization techniques with algorithms[M]. Pittsburgh: Academic Press, 2020. |
15 | SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅰ. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571. |
16 | SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅱ. Symmetries and transformations[J]. Quarterly of Applied Mathematics, 1987, 45(3): 573-582. |
17 | SIROVICH L. Turbulence and the dynamics of coherent structures. Ⅲ. Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590. |
18 | MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294. |
19 | XIE T T, YU H, WILAMOWSKI B. Comparison between traditional neural networks and radial basis function networks[C]∥ 2011 IEEE International Symposium on Industrial Electronics. Piscataway: IEEE Press, 2011: 1194-1199. |
20 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. |
21 | MORRIS M D, MITCHELL T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43(3): 381-402. |
22 | YANG Q, GUO X F, ZHENG H R, et al. Single- and multi-objective optimization of an aircraft hot-air anti-icing system based on Reduced Order Method[J]. Applied Thermal Engineering, 2023, 219: 119543. |
23 | CHRISTENSEN E A, BR?NS M, S?RENSEN J N. Evaluation of proper orthogonal decomposition: based decomposition techniques applied to parameter-dependent nonturbulent flows[J]. SIAM Journal on Scientific Computing, 1999, 21(4): 1419-1434. |
/
〈 |
|
〉 |