集群智能与协同控制

基于速度障碍的多无人船协同避碰

  • 何信 ,
  • 石宗英 ,
  • 钟宜生
展开
  • 1.清华大学 自动化系,北京 100084
    2.中国运载火箭技术研究院 研发中心,北京 100076

收稿日期: 2023-10-24

  修回日期: 2023-11-21

  录用日期: 2023-12-11

  网络出版日期: 2023-12-18

基金资助

国家重点研发计划(2020YFF0400101)

Multi⁃USV cooperative collision avoidance based on velocity obstacle

  • Xin HE ,
  • Zongying SHI ,
  • Yisheng ZHONG
Expand
  • 1.Department of Automation,Tsinghua University,Beijing 100084,China
    2.Research and Development Center,China Academy of Launch Vehicle Technology,Beijing 100076,China

Received date: 2023-10-24

  Revised date: 2023-11-21

  Accepted date: 2023-12-11

  Online published: 2023-12-18

Supported by

National Key Research and Development Program of China(2020YFF0400101)

摘要

无人船在航行时会遇到无法预知的障碍物和其他船只,并面临与其碰撞的风险。在繁忙的交通海域和复杂的环境中,这样的风险就更严峻。基于《国际海上避碰规则》对于船只避碰操纵行为的规定并进行多船避碰情况下的规则拓展,提出了一种多无人船的协同避碰方法。所提方法结合了速度障碍法以及各会遇情况下船只避碰行为的规定,综合考虑了动态船只与其他障碍的存在,创新地将实际的避碰问题转化为凸优化问题,为无人船提供实时的避碰参考信号,相较目前研究处理多船协同避碰问题效果更好、效率更高。相较已有研究进一步进行了复杂避碰情景下的较长时间仿真验证,以验证所提方法的可靠性。本文方法在复杂多船避碰情形下能够快速给出协同避碰指令,保障无人船安全航行,拥有较好的效果。

本文引用格式

何信 , 石宗英 , 钟宜生 . 基于速度障碍的多无人船协同避碰[J]. 航空学报, 2023 , 44(S2) : 729758 -729758 . DOI: 10.7527/S1000-6893.2023.29758

Abstract

USVs will encounter unpredictable obstacles and other vessels and face the risk of collision when navigating. Such risks are exacerbated in heavy water traffic. Based on COLREGs, a cooperative collision avoidance method for multi-USVs is designed in this paper. This method combines the velocity obstacle method with the COLREGs, taking the existence of dynamic vessels and other obstacles into account. This method transforms the collision avoidance problem into a convex optimization problem, and provides collision avoidance reference signals in real-time. Simulation validations under various collision avoidance scenarios are carried out to show the reliability of the proposed method.

参考文献

1 XIE W J, MA B L, FERNANDO T, et al. A simple robust control for global asymptotic position stabilization of underactuated surface vessels[J]. International Journal of Robust and Nonlinear Control201727(18): 5028-5043.
2 LYU H G, YIN Y. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields[J]. Journal of Navigation201972(3): 588-608.
3 LEE S M, KWON K Y, JOH J. A fuzzy logic for autonomous navigation of marine vehicles satisfying COLREG guidelines[J]. International Journal of Control, Automation, and Systems20042(2): 171-181.
4 XUE Y, LEE B S, HAN D. Automatic collision avoidance of ships[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment2009223(1): 33-46.
5 LARSON J, BRUCH M, EBKEN J. Autonomous navigation and obstacle avoidance for unmanned surface vehicles[C]∥ Unmanned Systems Technology VIII. Orlando: SPIE, 2006: 53-64.
6 CAMPBELL S, NAEEM W. A rule-based heuristic method for COLREGS-compliant collision avoidance for an unmanned surface vehicle[J]. IFAC Proceedings Volumes201245(27): 386-391.
7 NAEEM W, IRWIN G W, YANG A L. COLREGs-based collision avoidance strategies for unmanned surface vehicles[J]. Mechatronics201222(6): 669-678.
8 刘朝, 黄立文, 张可, 等. 基于天牛须搜索算法的多船避碰决策方法[J]. 武汉理工大学学报(交通科学与工程版)202145(5): 1000-1004.
  LIU Z, HUANG L W, ZHANG K, et al. Decision-making approach for multi-ship collision avoidance based on beetle antennae search algorithm[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering)202145(5): 1000-1004 (in Chinese).
9 JOHANSEN T A, PEREZ T, CRISTOFARO A. Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment[J]. IEEE Transactions on Intelligent Transportation Systems201617(12): 3407-3422.
10 ABDELAAL M, FR?NZLE M, HAHN A. Nonlinear model predictive control for trajectory tracking and collision avoidance of underactuated vessels with disturbances[J]. Ocean Engineering2018160: 168-180.
11 KUWATA Y, WOLF M T, ZARZHITSKY D, et al. Safe maritime navigation with COLREGS using velocity obstacles[C]∥ 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 4728-4734.
12 KUFOALOR D K M, BREKKE E F, JOHANSEN T A. Proactive collision avoidance for ASVs using a dynamic reciprocal velocity obstacles method[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 2402-2409.
13 HUANG Y M, CHEN L Y, VAN GELDER P H A J M. Generalized velocity obstacle algorithm for preventing ship collisions at sea[J].Ocean Engineering2019173: 142-156.
14 VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[M]∥Robotics research. Berlin: Springer, 2011: 3-19.
15 GENG X F, WANG Y C, WANG P, et al. Motion plan of maritime autonomous surface ships by dynamic programming for collision avoidance and speed optimization[J]. Sensors201919(2): 434.
16 CHO Y, HAN J, KIM J, et al. Experimental validation of a velocity obstacle based collision avoidance algorithm for unmanned surface vehicles[J]. IFAC-Papers OnLine201952(21): 329-334.
17 CHEN P F, HUANG Y M, MOU J M, et al. Ship collision candidate detection method: A velocity obstacle approach[J]. Ocean Engineering2018170: 186-198.
18 HUANG Y M, VAN GELDER P H A J M, WEN Y Q. Velocity obstacle algorithms for collision prevention at sea[J]. Ocean Engineering2018151: 308-321.
文章导航

/