飞行器新概念气动布局设计专栏

基于环量控制的虚拟舵面飞行器概念与设计综述

  • 张艳华 ,
  • 张登成 ,
  • 周章文 ,
  • 雷玉昌 ,
  • 李林
展开
  • 1.空军工程大学 航空工程学院,西安 710038
    2.中国人民解放军95034部队,百色 542899
    3.中国人民解放军93318部队,铁岭 112300

收稿日期: 2023-09-19

  修回日期: 2023-09-28

  录用日期: 2023-12-05

  网络出版日期: 2023-12-18

基金资助

国家自然科学基金(11402301)

Concept and design of virtual rudder surface aircraft based on circulation control: Review

  • Yanhua ZHANG ,
  • Dengcheng ZHANG ,
  • Zhangwen ZHOU ,
  • Yuchang LEI ,
  • Lin LI
Expand
  • 1.Aeronautics Engineering College,Air Force Engineering University,Xi’an 710038,China
    2.95034 Troop of PLA,Baise 542899,China
    3.93318 Troop of PLA,Tieling 112300,China

Received date: 2023-09-19

  Revised date: 2023-09-28

  Accepted date: 2023-12-05

  Online published: 2023-12-18

Supported by

National Natural Science Foundation of China(11402301)

摘要

利用环量控制替代机械舵面,构建的虚拟舵面飞行器在短距起降、高隐身、久航远航和机动飞行等方面具有性能优势,对未来无舵面飞翼布局飞行器的研究具有重要意义。本文通过梳理国内外环量控制技术的发展历程,明确了虚拟舵面飞行控制的发展趋势;介绍GACC翼型不同动量系数、迎角的升力特性以及单射流、双射流的气动特性,阐述了环量控制提高升力、形成虚拟舵面实现飞行控制的作用原理;基于SACOON平台在滚转、俯仰和偏航不同方向的力矩特性,验证了虚拟舵面优于机械舵面的控制效果;从环量控制翼型、气动布局、射流作动系统与射流飞控系统4个主要方面提出虚拟舵面飞行器的概念和设计思路;重点关注引气系统、舵面高效性、一体化设计、安全适应性等方面存在的问题和解决思路,推动虚拟舵面飞行器的工程应用。综述内容为环量控制技术应用于未来无舵面飞行器提供了一定的理论参考。

本文引用格式

张艳华 , 张登成 , 周章文 , 雷玉昌 , 李林 . 基于环量控制的虚拟舵面飞行器概念与设计综述[J]. 航空学报, 2024 , 45(6) : 629608 -629608 . DOI: 10.7527/S1000-6893.2023.29608

Abstract

The virtual rudder surface aircraft by circulation control instead of the mechanical rudder surface exhibits performance advantages in short-distance take-off and landing, high stealth, long range and maneuvering flight, and other aspects, meaning significantly for future research on rudderless flying wing configurations. We systematically summarize the research progress of circulation control technology at home and abroad, and clarify the development trend of virtual rudder flight control. The lift characteristics of the GACC airfoil with different momentum coefficients and angles of attack, and the aerodynamic characteristics of single and double jets are introduced. The principle of circulation control to improve lift and form “virtual rudder surface” is described. The moment characteristics of the SACOON platform in roll, pitch and yaw directions verify better control effect of the virtual rudder surface than that of the mechanical rudder surface. The concept and design ideas of virtual rudder surface aircraft are presented from four main aspects: circulation control airfoil, aerodynamic layout, jet actuation system, and jet flight control system. With focus on the problems and solutions in the air intake system, rudder efficiency, integrated design, safety and adaptability, the engineering application of virtual rudder aircraft is promoted. This review provides a theoretical reference for the application of the circulation control technology to rudderless aircraft in the future.

参考文献

1 ENGLAR R. Circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification-Past, present and future: AIAA-2000-2541[R]. Reston: AIAA, 2000.
2 METRAL A R. On the phenomenon of fluid veins and their application, the Coanda effect: FTS-786-RE[R]. England: AF Translation, 1939.
3 VOEDISCH A J. Analytical investigation of the Coanda Effect: FTR-2155-ND[R]. England: Air Material Command, 1947.
4 DUNHAM J. Circulation control applied to a circular cylinder: Report R287[R]. Farnborough: National Gas Turbine Establishment, 1967.
5 CHEESEMAN I. Circulation control and its application to stopped rotor aircraft: AIAA-1967-0747[R]. Reston: AIAA, 1967.
6 LOTH J L, FANUCCI J B, ROBERTS S C. Flight performance of a circulation controlled STOL aircraft[J]. Journal of Aircraft197613(3): 169-173.
7 ENGLAR R J, HEMMERLY R A, MOORE W H, et al. Design of the circulation control wing STOL demonstrator aircraft[J]. Journal of Aircraft198118(1): 51-58.
8 WILKERSON J B. An assessment of circulation control airfoil development: DTNSRDC-77-0084[R]. Maryland: DTNSRDC, 1977.
9 ENGAR R, HUSON G. Development of advanced circulation control wing high lift airfoils: AIAA-1983-1847[R]. Reston: AIAA, 1983.
10 ENGLAR R J. Development of the A-6/circulation control wing flight demonstrator configuration: DTNSRDC/ASED-79/01[R]. Maryland: DTNSRDC, 1979.
11 PUGLIESE A, ENGLAR R, . Flight testing the circulation control wing: AIAA-1979-1791[R]. Reston: AIAA, 1979.
12 TAI T C, KIDWELL Jr G H, VANDERPLAATS G N. Numerical optimization of circulation control airfoils: AIAA-1981-0016[R]. Reston: AIAA, 1981.
13 FERGUSON D J. Computational analysis of a two-slot circulation control airfoil[D]. Spalins: Air force institute of technology, 1989:4-34.
14 WILLIAMS S, FRANKE M. Navier-Stokes methods to predict circulation control airfoil performance: AIAA-1990-0574[R]. Reston: AIAA, 1990.
15 SCRUGGS T B. Computational investigation of circulation control turbulence modeling[D]. Spalins: Air force institute of technology, 1990:8-25.
16 GHEE T A, LEISHMAN J G. Unsteady circulation control aerodynamics of a circular cylinder with periodic jet blowing[J]. AIAA Journal199230(2): 289-299.
17 JONES G, VIKEN S, WASHBURN A, et al. An active flow circulation controlled flap concept for general aviation aircraft applications: AIAA-2002-3157[R]. Reston: AIAA, 2002.
18 JONES G S. Pneumatic ?ap performance for a 2D circulation control airfoil, steady and pulsed: NASA/ONR Circulation Control Workshop Part 2 [R]. Hampton: NASA Langley Research Center, 2005.
19 WONG C, HALE C, CHAN B, et al. Experimental studies on steady and unsteady pneumatic trailing edge devices for subsonic flow applications: AIAA-2007-1424[R]. Reston: AIAA, 2007.
20 JONES A, EDSTRAND A, CHANDRAN M, et al. An experimental investigation of unsteady and steady circulation control for an elliptical airfoil: AIAA-2010-0346[R]. Reston: AIAA, 2010.
21 ENGLAR R, BLAYLOCK G, GAETA R, et al. Recent experimental development of circulation control airfoils and pneumatic powered-lift systems: AIAA-2010-0345[R]. Reston: AIAA, 2010.
22 MILHOLEN W, JONES G, CHAN D. High-Reynolds number circulation control testing in the national transonic facility (invited): AIAA-2012-0103[R]. Reston: AIAA, 2012.
23 JONES G S, MILHOLEN W E, CHAN D T, et al. Development of the circulation control flow scheme used in the NTF semi-span FAST-MAC model: AIAA-2013-3048[R]. Reston: AIAA, 2013.
24 JONES G. Development of the dual aerodynamic nozzle model for the NTF semi-span model support system: AIAA-2011-3170[R]. Reston: AIAA, 2011.
25 LYNN K, RHEW R, JONES G, et al. High-reynolds number active blowing semi-span force measurement system development: AIAA-2012-3318[R]. Reston: AIAA, 2012.
26 JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration: AIAA-2017-3044[R]. Reston: AIAA, 2017.
27 MILHOLEN W E, JONES G S, CHAN D T, et al. Enhancements to the FAST-MAC circulation control model and recent high-reynolds number testing in the national transonic facility: AIAA-2013-2794[R]. Reston: AIAA, 2013.
28 SWANSON R, RUMSEY C, ANDERS S. Progress towards computational method for circulation control airfoils: AIAA-2005-0089[R]. Reston: AIAA, 2005.
29 MCGOWAN G, RUMSEY C, SWANSON R, et al. A three-dimensional computational study of a circulation control wing: AIAA-2006-3677[R]. Reston: AIAA, 2006.
30 SWANSON R, RUMSEY C. Numerical issues for circulation control calculations: AIAA-2006-3008[R]. Reston: AIAA, 2006.
31 SWANSON R C, RUMSEY C L. Computation of circulation control airfoil flows[J]. Computers & Fluids200938(10): 1925-1942.
32 RUMSEY C, NISHINO T. Numerical study comparing RANS and LES approaches on a circulation control airfoil: AIAA-2011-1179[R]. Reston: AIAA, 2011.
33 NISHINO T, HAHN S, SHARIFF K. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil[J]. Physics of Fluids201022(12): 125105.
34 MADAVAN N, ROGERS M. Direct numerical simulation of flow around a circulation control airfoil: AIAA-2010-4577[R]. Reston: AIAA, 2010.
35 WILDE P, BUONANNO A, CROWTHER W, et al. Aircraft control using fluidic maneuver effectors: AIAA-2008-6406[R]. Reston: AIAA, 2008.
36 WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal201856(10): 3808-3824.
37 FIELDING J P, MILLS A, SMITH H. Design and manufacture of the DEMON unmanned air vehicle demonstrator vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2010224(4): 365-372.
38 WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft:AIAA-2019-0282[R]. Reston: AIAA, 2019.
39 SHEARWOOD T R, NABAWY M R, CROWTHER W J, et al. Three-axis control of tailless aircraft using fluidic actuators: MAGMA case study: AIAA-2021-2530[R]. Reston: AIAA, 2021.
40 WARSOP C, CROWTHER W, FORSTER M. NATO AVT-239 task group: Supercritical coanda based circulation control and fluidic thrust vectoring: AIAA-2019-0044[R]. Reston: AIAA, 2019.
41 FORSTER M, AXANI L, WARSOP C. CFD investigation of the effectiveness of coanda reaction surface geometries for super-critical circulation control: AIAA-2023-1994[R]. Reston: AIAA, 2023.
42 GERAETS R P, CROWTHER B, QUINN M K, et al. Experimental investigation of the effectiveness of Coanda reaction surface geometries for super-critical circulation-control: AIAA-2023-1993[R]. Reston: AIAA, 2023.
43 王春雨,孙茂. 圆柱绕流的环量控制[J]. 航空学报199920(3): 211.
  WANG C Y, SUN M. Control of the circulation around a circular cylinder [J]. Acta Aeronautica et Astronautica Sinica199920(3): 211 (in Chinese).
44 刘晶昌, 徐建中, 郑敏. 环量控制翼型动态失速特性研究[J]. 工程热物理学报199920(1): 30-35.
  LIU J C, XU J Z, ZHENG M. Some dynamic still properties of an oscillating circulation control airfoil[J]. Journal of Engineering Thermophysics199920(1): 30-35 (in Chinese).
45 李志强, 杜曼丽. Gao-Yong模型用于吹气环量控制翼型的研究[J]. 航空动力学报200924(6): 1326-1331.
  LI Z Q, DU M L. Study of circulation control airfoil with blowing jet using Gao-Yong turbulence model[J]. Journal of Aerospace Power200924(6): 1326-1331 (in Chinese).
46 孔博, 王福新, 周涛. 基于环量控制无缝变弯度翼型的气动设计[J]. 空气动力学学报201331(5): 583-586.
  KONG B, WANG F X, ZHOU T. The aerodynamic design of seamlessly camber-variable airfoil based on circulation control[J]. Acta Aerodynamica Sinica201331(5): 583-586 (in Chinese).
47 董振兴, 高亚东, 王华明. 环量控制尾梁参数研究[J]. 航空科学技术200920(6): 17-20.
  DONG Z X, GAO Y D, WANG H M. Research on parameters of circulation control tail boom[J]. Aeronautical Science and Technology200920(6): 17-20 (in Chinese).
48 张超. 无尾桨直升机航向控制系统的气动特性研究[D]. 南京: 南京航空航天大学, 2009.
  ZHANG C. Research of aerodynamic characteristics to notar heading control system[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
49 董振兴, 高亚东, 王华明. 环量控制尾梁参数对直升机尾梁侧向推力的影响[J]. 直升机技术2011(4): 12-15, 24.
  DONG Z X, GAO Y D, WANG H M. Influence of circulation control parameters on lateral thrust of helicopter tail boom in rotor downwash[J]. Helicopter Technique2011(4): 12-15, 24 (in Chinese).
50 黄宇新. 无尾桨直升机的操纵性和稳定性分析[D]. 南京: 南京航空航天大学, 2012.
  HUANG Y X. The stability and control analysis of No tail rotor helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
51 李家春. 直升机环量控制尾梁反扭矩系统研究[D]. 南京: 南京航空航天大学, 2014.
  LI J C. Research on helicopter circulation control tail boom anti-torque system[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
52 李家春, 杨卫东. 直升机环量控制尾梁截面形状分析[J]. 空气动力学学报201533(2): 239-245.
  LI J C, YANG W D. An analysis of cross section of helicopter tail boom for NOTARTM system[J]. Acta Aerodynamica Sinica201533(2): 239-245 (in Chinese).
53 宋彦萍, 杨晓光, 李亚超, 等. 环量控制翼型中柯恩达效应的数值模拟[J]. 工程热物理学报201031(9): 1475-1479.
  SONG Y P, YANG X G, LI Y C, et al. Numerical simulation of coanda effect in circulation control airfoil[J]. Journal of Engineering Thermophysics201031(9): 1475-1479 (in Chinese).
54 宋彦萍, 陈焕龙, 李亚超, 等. 射流压力和高度对环量控制涡轮叶栅性能影响[J]. 工程热物理学报201132(3): 399-402.
  SONG Y P, CHEN H L, LI Y C, et al. Effect of jet pressure and jet height on the performance of circulation control turbine cascade[J]. Journal of Engineering Thermophysics201132(3): 399-402 (in Chinese).
55 宋彦萍, 陈焕龙, 李亚超, 等. 柯恩达表面形状对环量控制涡轮叶型性能影响[J]. 工程热物理学报201233(1): 43-46.
  SONG Y P, CHEN H L, LI Y C, et al. Effect of coanda surface shape on the performance of circulation control turbine cascade[J]. Journal of Engineering Thermophysics201233(1): 43-46 (in Chinese).
56 冯岩岩, 宋彦萍, 陈焕龙, 等. 柯恩达效应对涡轮叶栅气动性能及流场的影响[J]. 航空动力学报201328(3): 659-665.
  FENG Y Y, SONG Y P, CHEN H L, et al. Conanda effect on aerodynamic performance and flow field of turbine cascade[J]. Journal of Aerospace Power201328(3): 659-665 (in Chinese).
57 冯岩岩, 宋彦萍, 秦勇, 等. 双射流结构环量控制涡轮叶栅的性能[J]. 工程热物理学报201435(10): 1939-1942.
  FENG Y Y, SONG Y P, QIN Y, et al. Performance of circulation control turbine cascade with double jets structure applied[J]. Journal of Engineering Thermophysics201435(10): 1939-1942 (in Chinese).
58 乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报201951(1): 135-145.
  QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics201951(1): 135-145 (in Chinese).
59 XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal201756(2): 554-570.
60 樊晓羽. 风力机翼型环量控制气动特性研究[D]. 成都: 西华大学, 2020.
  FAN X Y. Research on aerodynamic characteristics of wind turbine airfoil based on circulation control[D].Chengdu: Xihua University, 2020 (in Chinese).
61 张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学: 技术科学201242(9): 1046-1053.
  ZHANG P F, YAN B, DAI C F. High-lift technology of airfoil controlled by synthetic jet circulation[J]. Scientia Sinica (Technologica)201242(9): 1046-1053 (in Chinese).
62 ZHANG P F, YAN B, LIU A B, et al. Numerical simulation on plasma circulation control airfoil[J]. AIAA Journal201048(10): 2213-2226.
63 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报202243(3): 025027.
  ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica202243(3): 025027 (in Chinese).
64 冯立好, 王晋军, KWINGSO C. 等离子体环量控制翼型增升的实验研究[J]. 力学学报201345(6): 815-821.
  FENG L H, WANG J J, KWINGSO C. Experimental investigation on lift increment of a plasma circulation control airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics201345(6): 815-821 (in Chinese).
65 冯立好, 王晋军, 刘亚光, 等. 适用于尖后缘机翼的等离子体环量控制方法: CN102887223A[P]. 2013-01-23.
  FENG L, WANG J, LIU Y, et al. Method of controlling plasma circular rector for wing with sharp trailing edge: CN102887223A[P]. 2013-01-23 (in Chinese).
66 FENG L H, JUKES T N, CHOI K S, et al. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap[J]. Experiments in Fluids201252(6): 1533-1546.
67 李林, 张登成, 张艳华. 基于CFD研究等离子体环量控制流场特性[J]. 航空计算技术201646(5): 57-59, 62.
  LI L, ZHANG D C, ZHANG Y H. Study on flow characteristic of plasma circulation control based on CFD[J]. Aeronautical Computing Technique201646(5): 57-59, 62 (in Chinese).
68 李林, 张登成, 张艳华. 等离子体环量控制作用机理的数值仿真[J]. 空军工程大学学报(自然科学版)201718(3): 9-15.
  LI L, ZHANG D C, ZHANG Y H. A study of numerical simulation on interaction mechanism of plasma circulation control[J]. Journal of Air Force Engineering University (Natural Science Edition)201718(3): 9-15 (in Chinese).
69 张艳华, 李林, 张登成, 等. 基于等离子体环量控制的翼型气动特性[J]. 强激光与粒子束201729(6): 65007.
  ZHANG Y H, LI L, ZHANG D C, et al. Aerodynamics of airfoil based on plasma circulation control[J]. High Power Laser and Particle Beams201729(6): 65007 (in Chinese).
70 李林, 张艳华, 张登成, 等. 激励器位置影响环量控制翼型气动特性的实验研究[J]. 高电压技术201844(12): 4061-4070.
  LI L, ZHANG Y H, ZHANG D C, et al. Experimental study on effect of actuation position on circulation control airfoil aerodynamic characteristics[J]. High Voltage Engineering201844(12): 4061-4070 (in Chinese).
71 LEI Y, ZHANG Y H, ZHANG D C, et al. Pulsed jet characteristics of circulation control airfoil[J]. Environment and Materials Science2020585:012170
72 雷玉昌, 张登成, 张艳华, 等. 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报202248(3): 485-494.
  LEI Y C, ZHANG D C, ZHANG Y H, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics202248(3): 485-494 (in Chinese).
73 陈款, 张艳华, 雷玉昌, 等. 基于本征正交分解的脉冲射流尾迹分析[J]. 应用力学学报202239(5): 834-844.
  CHEN K, ZHANG Y H, LEI Y C, et al. Wake analysis of pulsed jet based on proper orthogonal decomposition[J]. Chinese Journal of Applied Mechanics202239(5): 834-844 (in Chinese).
74 雷玉昌, 张登成, 张艳华. 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报202147(10): 2138-2148.
  LEI Y C, ZHANG D C, ZHANG Y H. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics202147(10): 2138-2148 (in Chinese).
75 王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报201839(11): 122129.
  WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica201839(11): 122129 (in Chinese).
76 姜裕标, 张刘, 黄勇, 等. 内吹式襟翼环量控制翼型升力响应特性[J]. 航空学报201839(7): 121807.
  JIANG Y B, ZHANG L, HUANG Y, et al. Lift response characteristics of a circulation control airfoil with internally blown flap[J]. Acta Aeronautica et Astronautica Sinica201839(7): 121807 (in Chinese).
77 姜裕标, 王万波, 常智强, 等. 定常吹气对无缝襟翼翼型地面效应影响的数值模拟[J]. 航空学报201738(6): 120751.
  JIANG Y B, WANG W B, CHANG Z Q, et al. Numerical simulation of effect of steady blowing slot-less flap airfoil in ground effect[J]. Acta Aeronautica et Astronautica Sinica201738(6): 120751 (in Chinese).
78 杜海, 杨乐杰, 李铮, 等. 多级环量控制技术增升机理及能效分析[J]. 航空学报202243(S2): 727709.
  DU H, YANG L /Y)J, LI Z, et al. Mechanism and energy efficiency analysis of multi-stage circulation control technology[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727709 (in Chinese).
79 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报201637(2): 411-428.
  ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica201637(2): 411-428 (in Chinese).
80 齐万涛, 吕新波, 伍智敏. 环量控制技术在飞机纵向俯仰控制中的应用[J]. 飞行力学201937(2): 77-82.
  QI W T, LYU X B, WU Z M. Application of circulation control technology on aircraft longitudinal pitch control[J]. Flight Dynamics201937(2): 77-82 (in Chinese).
81 张同任, 吕心悦, 徐悦, 等. 吹气射流飞控飞行器设计及试飞验证[J]. 航空科学技术202031(5): 50-55.
  ZHANG T R, LV X Y, XU Y, et al. Design and flight test verification of fluidic flight control aircraft[J]. Aeronautical Science & Technology202031(5): 50-55 (in Chinese).
82 王海洋. 基于环量控制的无人飞行器气动特性研究与飞行试验[D]. 南京: 南京航空航天大学, 2014.
  WANG H Y. Research on aerodynamic characteristics and flight test of UAV based on circulation control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
83 SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering201932(1): 04018134.
84 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报202041(12): 124080.
  SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica202041(12): 124080 (in Chinese).
85 赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报202254(5): 1220-1228.
  ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics202254(5): 1220-1228 (in Chinese).
86 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报201637(3): 817-825.
  LI Y J, LUO Z B, DENG X, et al. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica201637(3): 817-825 (in Chinese).
87 朱寅鑫, 彭文强, 罗振兵, 等. 全叶高合成双射流对大折转角扩压叶栅的影响[J]. 航空学报202344(12): 127734.
  ZHU Y X, PENG W Q, LUO Z B, et al. Influence of full-span dual synthetic jets on high-turning compressor cascade[J]. Acta Aeronautica et Astronautica Sinica202344(12): 127734 (in Chinese).
88 邓雄, 夏智勋, 罗振兵, 等. 非对称出口合成双射流激励器矢量特性实验研究[J]. 航空学报201536(2): 510-517.
  DENG X, XIA Z X, LUO Z B, et al. Experimental investigation on the vectoring characteristic of dual synthetic jets actuator with asymmetric exits[J]. Acta Aeronautica et Astronautica Sinica201536(2): 510-517 (in Chinese).
89 刘晓冬, 蔡为民, 张沛良, 等. 基于柯恩达效应的飞翼布局环量控制研究[J]. 西北工业大学学报202240(4): 845-852.
  LIU X D, CAI W M, ZHANG P L, et al. Study on circulation control of flying wing based on Coanda effect[J]. Journal of Northwestern Polytechnical University202240(4): 845-852 (in Chinese).
90 邵帅, 郭正, 贾高伟, 等. 宽速域飞翼布局后缘射流滚转控制研究[J]. 国防科技大学学报202244(4): 101-115.
  SHAO S, GUO Z, JIA G W, et al. Roll control study of flying wing based on trailing-edge jet at wide speed range[J]. Journal of National University of Defense Technology202244(4): 101-115 (in Chinese).
91 张刘, 黄勇, 陈辅政, 等. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报202344(18): 128224.
  ZHANG L, HUANG Y, CHEN F Z, et al. Rudderless attitude control flight test based on circulation control of tailless flying wing in pitch and roll axes[J]. Acta Aeronautica et Astronautica Sinica202344(18): 128224 (in Chinese).
92 CUMMINGS R M, SCHüTTE A. Integrated computational/experimental approach to unmanned combat air vehicle stability and control estimation[J]. Journal of Aircraft201249(6): 1542-1557.
93 COPPIN J, BIRCH T, KENNETT D, et al. Prediction of control effectiveness for a highly swept unmanned air vehicle configuration[J]. Journal of Aircraft201855(2): 534-548.
94 HUTCHIN C R. NATO AVT-239 Task group: Control effectiveness and system sizing requirements for integration of fluidic flight controls on the SACCON aircraft configuration: AIAA-2019-0280[R]. Reston: AIAA, 2019.
95 FAIRHURST D J. A summary of SACCON DLR-F17E tests carried out on model RA234 in the warton 1.2 m high speed wind tunnel: BAE-WEIS-RP-ASF-WTD-119741,WP070-O-005[R]. Warton: BAE Systems, 2012.
96 KENNETT D J, HOHOLIS G, BADCOCK K J. Numerical Simulation of Control Surface Deflections over a generic UCAV configuration at off-design flow conditions: AIAA-2014-2134[R]. Reston: AIAA, 2014.
97 SLOMSKI J, CHANG P, ARUNAJATESAN S. Large eddy simulation of a circulation control airfoil: AIAA-2006-3011[R]. Reston: AIAA, 2006.
98 ENGLAR R, JONES G, ALLAN B, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation: AIAA-2009-0902[R]. Reston: AIAA, 2009.
99 GOLDEN R, MARSHALL D. Design and performance of circulation control flap systems: AIAA-2010-1053[R]. Reston: AIAA, 2010.
100 LEE-RAUSCH E, VATSA V, RUMSEY C. Computational analysis of dual radius circulation control airfoils: AIAA-2006-3012[R]. Reston: AIAA, 2006.
101 李林, 马超, 王立新. 小展弦比飞翼布局飞机稳定特性[J]. 航空学报200728(6): 1312-1317.
  LI L, MA C, WANG L X. Stability features of low aspect-ratio flying wings[J]. Acta Aeronautica et Astronautica Sinica200728(6): 1312-1317 (in Chinese).
102 付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报202041(1): 123176.
  FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(1): 123176 (in Chinese).
103 李淼, 王立新, 黄成涛. 舵面特性对飞翼构型作战飞机短周期品质的影响[J]. 航空学报200930(11): 2059-2065.
  LI M, WANG L X, HUANG C T. Influence of control surface characteristics on short period mode flying qualities for flying wing aircraft[J]. Acta Aeronautica et Astronautica Sinica200930(11): 2059-2065 (in Chinese).
104 周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报202041(6): 523422.
  ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523422 (in Chinese).
105 FIELDING J P, LAWSON C P, PIRES R, et al. Development of the demon technology demonstrator UAV[C]∥ 27th Congress of the International Council of the Aeronautical Sciences 2010. Washington, D.C. :ICAS, 2010: 114-120.
106 BRANDT S, MCLAUGHLIN T E, WILLIAMS D R, et al. NATO AVT-239 task group: Flight test of compressed and bleed-air driven control effectors on the ICE/SACCON UAS subscale aircraft: AIAA-2019-0283[R]. Reston: AIAA, 2019.
文章导航

/