材料工程与机械制造

石墨烯掺杂聚合物复合材料介电性能建模

  • 方子唯 ,
  • 何晶靖 ,
  • 林京
展开
  • 1.北京航空航天大学 可靠性与系统工程学院,北京 100191
    2.北京航空航天大学 宁波创新研究院 高精尖制造技术与装备创新研究中心,宁波 315800

收稿日期: 2023-09-01

  修回日期: 2023-11-17

  录用日期: 2023-12-12

  网络出版日期: 2023-12-18

基金资助

国家自然科学基金(U2230204);宁波国际科技合作项目(2023H018)

Modeling study on dielectric properties of graphene⁃doped polymer composites

  • Ziwei FANG ,
  • Jingjing HE ,
  • Jing LIN
Expand
  • 1.School of Reliability and Systems Engineering,Beihang University,Beijing 100191,China
    2.Advanced Manufacturing Center,Ningbo Institute of Technology,Beihang University,Ningbo 315800,China

Received date: 2023-09-01

  Revised date: 2023-11-17

  Accepted date: 2023-12-12

  Online published: 2023-12-18

Supported by

National Natural Science Foundation of China(U2230204);Ningbo International Science and Technology Cooperation Project(2023H018)

摘要

基于界面极化理论提出了一个石墨烯掺杂聚合物复合材料的介电模型,描述了石墨烯对复合材料有效介电常数的影响。该模型解释了石墨烯纳米片与聚合物基体在界面层的相互作用,计算了界面层的局部介电常数和局部电场强度,并通过控制变量方式对模型内材料参数的影响进行了分析。与传统经验模型相比,提出的模型明确了分离上限距离、势垒高度、基体层电导率、石墨烯纳米片层尺寸等因素对有效介电常数的影响机制。对多类二元、三元介电复合材料体系的有效介电常数进行了预测,并与实验样品实测值、文献值进行对比,验证了所提出模型的有效性。

本文引用格式

方子唯 , 何晶靖 , 林京 . 石墨烯掺杂聚合物复合材料介电性能建模[J]. 航空学报, 2024 , 45(14) : 429510 -429510 . DOI: 10.7527/S1000-6893.2023.29510

Abstract

A dielectric model of graphene-doped polymer composites is proposed based on the interfacial polarization theory, and the effect of graphene on the effective permittivity of the composites is described. The proposed model explains the interaction between graphene nanoplatelets and polymer matrix at the interfacial layer and calculates the local permittivity and the local electric field of the interfacial layer. With the control variable method, the influence of material properties in the dielectric model is analyzed. Compared with the traditional empirical model, the proposed dielectric model clarified the mechanism of the effect of the upper limit separation distance, the potential barrier height, the matrix layer conductivity, the graphene nanoplatelet sizes, and other factors on the effective permittivity. The effective permittivity of multiple binary and ternary dielectric composites is predicted. The validity of the proposed model is verified by comparing with the experimental values of samples and literature.

参考文献

1 李田, 李镇. 基于展向参数主动控制的机翼外形设计方法[J]. 飞机设计202242(6): 58-63.
  LI T, LI Z. Wing shape design method based on active control of spanwise parameters[J]. Aircraft Design202242(6): 58-63 (in Chinese).
2 王磊, 陈学刚. 流线型民用飞机机头外形的参数化设计方法研究[J]. 机械设计与制造2023(11): 60-63.
  WANG L, CHEN X G. Research on parametric design method of streamlined civil aircraft nose shape[J]. Machinery Design & Manufacture2023(11): 60-63 (in Chinese).
3 PARK S, INMAN D J, YUN C B. An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks[J]. Engineering Structures200830(10): 2792-2799.
4 BRUNNER A J, BARBEZAT M, HUBER C, et al. The potential of active fiber composites made from piezoelectric fibers for actuating and sensing applications in structural health monitoring[J]. Materials and Structures200538(5): 561-567.
5 HUAN T D, BOGGS S, TEYSSEDRE G, et al. Advanced polymeric dielectrics for high energy density applications[J]. Progress in Materials Science201683: 236-269.
6 HUANG L Y, LU C X, WANG F, et al. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties[J]. RSC Adv20144(85): 45220-45229.
7 王奇, 漏琦伟, 樊占奎, 等. 碳纳米管掺杂对聚二甲基硅氧烷薄膜相对介电常数的影响[J]. 材料科学与工程学报202240(1): 57-61.
  WANG Q, LOU Q W, FAN Z K, et al. Relative permittivity of PDMS with doped carbon nanotubes[J]. Journal of Materials Science and Engineering202240(1): 57-61 (in Chinese).
8 郑金桥, 梁飞, 戴金航, 等. 核壳填料Ag@TiO2对PTFE基复合材料微波介电性能的调控特性研究[J]. 电子元件与材料202140(5): 460-467.
  ZHENG J Q, LIANG F, DAI J H, et al. Modulation of microwave dielectric properties of PTFE based composite Materials by Ag@TiO2 core-shell fillers[J]. Electronic Components and Materials202140(5): 460-467 (in Chinese).
9 BROADBENT S R, HAMMERSLEY J M. Percolation processes[J]. Mathematical Proceedings of the Cambridge Philosophical Society195753(3): 629-641.
10 苏尧天. 氧化石墨烯改性聚合物基柔性高介电材料的制备及其在传感领域的应用[D]. 北京: 北京化工大学, 2022.
  SU Y T. Graphene oxide modified polymer-based flexible high dielectric nanocomposites for sensoring application[D]. Beijing: Beijing University of Chemical Technology, 2022 (in Chinese).
11 LEE J Y, LIANG K, AN K H, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic Metals2005150(2): 153-157.
12 CHENG H, TORQUATO S. Electric-field fluctuations in random dielectric composites[J]. Physical Review B199756(13): 8060-8068.
13 ZHANG L, CHENG Z Y. Development of polymer-based 0?3 composites with high dielectric constant[M]∥ LI J. Progress in Advanced Dielectrics. Hackensack: World Scientific Publishing Co., Inc., 2020: 369-409.
14 SCAIFE B K P. Principles of dielectrics[M]. Oxford: Oxford Science Publications, 1998.
15 BRUGGEMAN D. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances[J]. Annals of Physics1935416: 636-791.
16 POON Y M, SHIN F G. A simple explicit formula for the effective dielectric constant of binary 0-3 composites[J]. Journal of Materials Science200439(4): 1277-1281.
17 BERGMAN D J, IMRY Y. Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material[J]. Physical Review Letters197739(19): 1222-1225.
18 LEE J, LIM S. Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide[J]. Journal of Industrial and Engineering Chemistry201867: 478-485.
19 RAHMAN M A, CHUNG G S. Synthesis of PVDF-graphene nanocomposites and their properties[J]. Journal of Alloys and Compounds2013581: 724-730.
20 OUNAIES Z. Electrical properties of single wall carbon nanotube reinforced polyimide composites[J]. Composites Science and Technology200363(11): 1637-1646.
21 ZHENG Q B, XUE Q Z, YAN K Y, et al. Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules[J]. The Journal of Physical Chemistry C2007111(12): 4628-4635.
22 TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation200512(4): 669-681.
23 KIM J Y, LEE W H, SUK J W, et al. Chlorination of reduced graphene oxide enhances the dielectric constant of reduced graphene oxide/polymer composites[J]. Advanced Materials201325(16): 2308-2313.
24 THAKUR Y, ZHANG T, IACOB C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers[J]. Nanoscale20179(31): 10992-10997.
25 DENG F, ZHENG Q S. An analytical model of effective electrical conductivity of carbon nanotube composites[J]. Applied Physics Letters200892(7): 071902.
26 PAYANDEHPEYMAN J, MAZAHERI M, KHAMEHCHI M. Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects[J]. Composites Communications202021: 100364.
27 CHEN X, YANG T N, ZHANG Q Y, et al. Topological structure enhanced nanostructure of high temperature polymer exhibiting more than ten times enhancement of dipolar response[J]. Nano Energy202188: 106225.
28 ZHANG B, CHEN X, LU W C, et al. Morphology-induced dielectric enhancement in polymer nanocomposites[J]. Nanoscale202113(24): 10933-10942.
29 HE J J, FANG Z W, GAO C J, et al. Graphene enhanced flexible piezoelectric transducers for dynamic strain measurement: from material preparation to application[J]. Smart Material Structures202332(2): 025012.
30 钟佳明. 聚偏氟乙烯基高介电储能薄膜的制备与性能研究[D]. 合肥: 中国科学技术大学, 2022.
  ZHONG J M. Preparation and properties of polyvinylidene fluoride based composites with high dielectric performance and energy[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
31 WANG S F, CHEN L Q. Interfacial transport in lithium-ion conductors[J]. Chinese Physics B201625(1): 018202.
32 WAN Y J, ZHU P L, YU S H, et al. Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites[J]. Composites Science and Technology2017141: 48-55.
33 WANG G Q, WANG J W, ZHOU S W, et al. Enhanced dielectric properties of acrylic resin elastomer based nanocomposite with thermally reduced graphene nanosheets[J]. RSC Advances20166(100): 98440-98448.
34 WANG Y J, HE P F, LI F Y. Graphene-improved dielectric property of CCTO/PVDF composite film[J]. Ferroelectrics2019540(1): 154-161.
文章导航

/