翼尖铰接组合式无人机气动建模方法及布局参数影响
收稿日期: 2023-09-14
修回日期: 2023-09-28
录用日期: 2023-12-04
网络出版日期: 2023-12-13
基金资助
国家自然科学基金(12102027)
Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV
Received date: 2023-09-14
Revised date: 2023-09-28
Accepted date: 2023-12-04
Online published: 2023-12-13
Supported by
National Natural Science Foundation of China(12102027)
翼尖铰接组合式无人机是一类新概念飞行器,其由多个单体无人机以翼尖铰接形式连接而成并允许相对滚转运动,在布局参数及飞行力学特性上与常规飞行器有较大不同,单体无人机间存在气动耦合。首先基于状态空间形式涡格法给出了针对该类型飞行器的气动导数计算方法。然后,结合Newton-Euler方程建立的飞行力学模型进行配平计算及飞行力学稳定性分析,说明其具有以相对滚转运动主导的不稳定复合运动飞行模态特征。最后,开展布局参数对飞行动力学稳定性影响研究,经分析,减小单体无人机配平滚转角,增加后掠角可以改善飞行稳定性,同时机翼与尾翼距离存在改善飞行稳定性最优值。研究结果可为翼尖铰接组合式无人机设计提供指导和参考。
安朝 , 霍贵玺 , 孟杨 , 谢长川 , 杨超 . 翼尖铰接组合式无人机气动建模方法及布局参数影响[J]. 航空学报, 2024 , 45(6) : 629587 -629587 . DOI: 10.7527/S1000-6893.2023.29587
The wingtip-hinged multi-body combined Unmanned Aerial Vehicle (UAV) represents a novel conceptual aircraft, comprising multiple individual unmanned aircraft interconnected through wingtip hinges and allowing for relative roll motion. It exhibits significant distinctions in layout parameters and flight dynamics characteristics compared to conventional aircraft, with the presence of aerodynamic coupling between individual unmanned aircraft. First, the state-space vortex lattice method is employed to derive the aerodynamic derivatives specific to this aircraft type. Then, utilizing the Newton-Euler equations, a flight dynamics model is established for trim calculation and stability analysis, elucidating its unstable compound motion flight modes dominated by relative roll motion. Lastly, an investigation is conducted on the influence of layout parameters on flight dynamics stability. The analysis shows that reducing the trim roll angle of individual unmanned aircraft and increasing the sweep angle can enhance flight stability, while an optimal distance between the wing and tail is found to improve flight stability. The research findings can provide guidance and reference for the design of wingtip-hinged multi-body combined UAVs.
1 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. |
JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). | |
2 | 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. |
NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology, 2013, 34(5): 37-43 (in Chinese). | |
3 | 安朝. 大柔性飞行器结构建模方法及气动弹性分析研究[D]. 北京: 北京航空航天大学, 2020: 12-15. |
AN C. Structure modeling methodology and aeroelastic analysis of large flexible aircraft[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2020: 12-15 (in Chinese). | |
4 | PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760. |
5 | PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1): 88-94. |
6 | ANDERSON C. Dangerous experiments: Wingtip coupling at 15000 Feet[J]. Flight Journal, 2000, 5(6): 64-72. |
7 | WRIGHT-PATTERSON A F B. United States Air Force museum guidebook[M]. Ohio: Air Force Museum Foundation, 1975. |
8 | NEELY R H. Flutter tests of a 1/25-scale model of the B-36J/RF-84F tip-coupled airplane configuration in the Langley 19-foot pressure tunnel: NACA-RM-SL56A25B [R]. Washington, D.C.: Research Memorandum for the U.S. Air Force, 1956. |
9 | MAGILL S, DURHAM W. Modeling and simulation of wingtip-docked flight[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002. |
10 | MONTALVO C. Meta aircraft flight dynamics and controls[D]. Atlanta: Georgia Institute of Technology, 2014. |
11 | MONTALVO C, COSTELLO M. Meta aircraft flight dynamics[J]. Journal of Aircraft, 2015, 52(1): 107-115. |
12 | TROUB B, MONTALVO C. Meta aircraft controllability[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016. |
13 | K?THE A, LUCKNER R. Flight mechanical modeling and analysis of multi-body aircraft[C]∥ International Forum on Aeroelasticity and Structural Dynamics. 2015: 1-12. |
14 | K?THE A, BEHRENS A, HAMANN A. Closed-loop flight tests with an unmanned experimental multi-body aircraft[C]∥ International Forum on Aeroelasticity and Structural Dynamics. 2017:1-15. |
15 | CRACAU D. The AlphaLink compound aircraft: Aviation outside the Box! [EB/OL]. (2020-10-19) [2020-12-28]. . |
16 | COOPER J R, ROTHHAAR P M. Dynamics and control of in-flight wingtip docking[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2327-2337. |
17 | AN C, XIE C C, MENG Y, et al. Flight mechanical analysis and test of unmanned multi-body aircraft[C]∥ International Forum on Aeroelasticity and Structural Dynamics. 2019:1-17. |
18 | 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机:创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15. |
YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: Innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese). | |
19 | WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. |
20 | 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946. |
ZHOU W, MA P Y, GUO Z, et al. Research of combined fixed-wing UAV based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946 (in Chinese). | |
21 | 杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报, 2023, 44(8): 2245-2262. |
DU W S, ZHOU Z, BAI Y, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii, 2023, 44(8): 2245-2262 (in Chinese). | |
22 | 杨澜. 大柔性机翼气动建模方法及气动弹性分析研究[D]. 北京: 北京航空航天大学, 2021: 38-40. |
YANG L. Aerodynamics modeling methodology and aeroelastic analysis of large flexible wing[D]. Beijing: Beihang University, 2021: 38-40 (in Chinese). | |
23 | YANG L, XIE C C, YANG C. Geometrically exact vortex lattice and panel methods in static aeroelasticity of very flexible wing[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(3): 742-759. |
24 | WERTER N P M, DE BREUKER R, ABDALLA M M. Continuous-time state-space unsteady aerodynamic modeling for efficient loads analysis[J]. AIAA Journal, 2018, 56(3): 905-916. |
25 | KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. New York: McGraw-Hill Inc, 1991. |
26 | 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248-256. |
AN C, XIE C C, MENG Y, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics, 2021, 38(11): 248-256 (in Chinese). | |
27 | JONES J R. Development of a very flexible tested aircraft for the validation of nonlinear aeroelastic codes[D]. Ann Arbor: University of Michigan, 2017: 113-115. |
28 | ZONA Technology, Inc. ZONAIR user’s manual [M]. 6th ed. Scottsdale:ZONA Technology, Inc., 2010. |
/
〈 |
|
〉 |